Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Code Less to Code More’

Streamlining Language Server Protocol and Type System Development for Language Families

Federico Bruzzone ®*, Walter Cazzola®©**, Luca Favalli ©*

“Universita degli Studi di Milano, Computer Science Department, Milan, Italy

Abstract

Developing editing support for £ languages in £ editors is complex and time-consuming. Some languages do not provide dedicated
editors, while others offer a single native editor. The language server protocol (LSP) reduces the language-editor combinations
L x Eto L+ E, where a single language server communicates with editors via LSP plugins. However, overlapping implementations
of linguistic components remain an issue. Existing language workbenches struggle with modularity, reusability, and leveraging type
systems for language server generation. In this work, we propose: i) Typelang, a family of domain-specific languages for modular,
composable, and reusable type system implementation, ii) a modular language server generation process, producing servers for
languages built in a modular workbench, iii) the variant-oriented programming paradigm and a cross-artifact coordination layer
to manage interdependent software variants, and iv) an LSP plugin generator, reducing £ to 1 by automating plugin creation for
multiple editors. To simplify editing support for language families, each language artifact integrates its own Typelang variant, used to
generate language servers. This reduces combinations to 7~ X 1, where T~ = L represents the number of type systems. Further reuse
of language artifacts across languages lowers this to N/ x 1, where N << T, representing unique type systems. We implement
Typelang in Neverlang, generating language servers for each artifact and LSP plugins for three editors. Empirical evaluation shows a
93.48% reduction in characters needed for type system implementation and 100% automation of LSP plugin generation, significantly

lowering effort for editing support in language families, especially when artifacts are reused.

Keywords: Software product lines, Feature modularity, Language Server Protocol, Integrated development environments,
Software systems architectures, Extensible languages, Domain-specific languages, Neverlang

1. Introduction

Context. Programming languages require editing support
for a proficient use [5]. This applies to both general-purpose
(GPL) and domain-specific languages (DSL). Modern integrated
development environments (IDE) and source-code editors' pro-
vide editing support capabilities—e.g., highlighting, code com-
pletion, and hovering—but the development of such support is
complex and time-consuming [121]. Supporting £ languages
across & editors requires to implement editing features for each
language-editor combination, resulting in a total of £ X £ imple-
mentations. Language development effort is therefore burdened
by the editing support for each targeted editor, whereas edit-
ing features can overlap across editors Rask et al. [117]: the
risk is introducing inconsistencies and useless implementation
overhead. Among many results achieved over the years to im-
prove upon this aspect, we mention type systems implementa-
tions [20, 19], language workbenches [49] and modular language

TThis work was partly supported by the MUR project “T-LADIES” (PRIN
2020TL3X8X).
*Corresponding author.

Email addresses: federico.bruzzone@unimi.it (Federico Bruzzone®),
cazzola@di.unimi.it (Walter Cazzola®), favalli@di.unimi.it (Luca
Favalli®)

For sake of brevity, from here onwards, when not otherwise specified, we
will use the term editor meaning both IDE and code editor.

development [7, 99, 110, 132]. Bettini [18] demonstrated that
type systems are key components for language editing support.
For instance, type inference rules can be used to provide inlining
hints or error messages and suggestions thereof.

LSP as a solution. In 2016, Microsoft, along with RedHat
and Codenvy, proposed the LSP? [59] as to limit the editing
support implementation effort. The LSP model reduces the
number of combinations to be implemented from £ X £ to
L + & by decoupling the implementation of the language editing
support from the editor itself. It is based on a component dubbed
language server which communicates with the editor through an
editor-dependent LSP plugin (as shown in Fig. 1), both adhering
to the LSP specification. The LSP achieves reuse of language
services across different editors, but the overlap among different
languages remains unaddressed: the number of language servers
and the LSP plugins remain £ and € respectively. Type systems
development for the language server and LSP plugin generation
is complex and usually carried out manually and monolithically
in a top-down fashion [18, 19]. Recently, researchers explored
software product lines (SPL) and their impact on editors [87, 14],
which could enhance the modularity and reusability of LSPs and
their type systems. SPLs applied to programming languages
lead to the creation of language product lines (LPL) [86]—i.e.

Zhttps://microsoft.github.io/language-server-protocol

https://doi.org/10.1016/j.jss.2025.112554
https://orcid.org/0009-0004-6086-8810
https://orcid.org/0000-0002-4652-8113
https://orcid.org/0000-0001-7452-2440
https://orcid.org/0009-0004-6086-8810
https://orcid.org/0000-0002-4652-8113
https://orcid.org/0000-0001-7452-2440

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Nvim

%Fma(ﬁs
4" Code

:]\

Figure 1: Traditional vs LSP approach to language editing support

SPLs in which each product is a language variant. LPLs have
been used in both GPLs [33, 85, 86, 32] and DSLs [34, 61, 93,
133, 140, 141, 50] development.

Modularization and Reusability Issues. Notwithstand-
ing this, the editing support is still coupled to the editor ecosys-
tem and can not be reused across different editors—for example,
support implemented for Eclipse cannot be reused in IntelliJ
IDEA. Most language workbenches are integrated with their na-
tive editor and most of them do not provide editing support with
modularization in mind. Neverlang [87] is the first language
workbench to leverage LPLs towards the reusability of the edit-
ing support, yet limited to the Eclipse IDE [87]. Xtext is the only
language workbench that generates the language server for the
LSP support [24, 25] through XTypeS [15], and its successor
XSemantics for the type system definition [17, 18, 20, 19]. Yet,
Xtext does not support modular language development and the
language server implementation cannot be spread across lan-
guage artifacts. The main challenge, as Bertolotti et al. [13]
reported, lies in the overlap between the implementations of
similar linguistic components, which stems from the monolithic
design of language servers. It hinders their extensibility and
reusability in other languages. Maintaining consistency between
the language server and the language itself demands time and
effort. While £ + £ is a linear number of combinations, the
number of editor £ still remains significant and cannot be over-
looked. As shown in Table 1, none of the analyzed language
workbenches provides support for LSP plugin generation, nor
for modular language servers.

Contribution. In this work, we propose Typelang, a fam-
ily of domain-specific languages for the implementation of type
systems in a modular, composable and reusable way. We demon-
strate how the language server implementation can be modular-
ized and reused by automatically generating it for each language
artifact with a specific Typelang variant. The Typelang family
follows the variant-oriented programming paradigm and man-
ages a set of interdependent software components through the
cross-artifact coordination layer. This approach is particularly
suited to complex software systems, which pose numerous chal-
lenges [64, 84]. The former defines properties for the integration
of product variants within a software system as first-class cit-
izens. The latter provides properties for integrating different
variants across various artifacts—self-contained software com-

ponents that may belong to a product line—to address issues of
modularity and reusability. Finally, we demonstrate that the pro-
posed approach can reduce the number of combinations required
to provide editing support for £ languages in £ editors. Initially,
the combinations decrease from £ + € to T x 1, where T rep-
resents the set of type systems associated with the languages.
This is further reduced to N x 1 where N << T and N\ is the
number of type systems without overlaps, achieved by reusing
the language artifacts—and their type system—across different
languages. The number of editors is reduced to 1 because the
LSP client generator can automatically generate the LSP plugin
for any editor.

Evaluation. To evaluate our approach, we extended Never-
lang to support the Typelang family of DSLs and the LSP plugin
generation. Using Typelang, we modularly defined the type
system for SimpleLanguage*—a general-purpose language that
is part of the GraalVM project [142]—and Neverlang [132, 135]
itself. Then, we generated the plugins for three editors (Visual
Studio Code, NeoVim, and Vim). We analyzed the impact of
Typelang on the language server generation process, which is
entirely based on Typelang: we compared the amount of code
needed to implement a type system in Neverlang before and
after the introduction of Typelang by calculating the percentage
reduction in lines of code (LoC) and in the number of characters
(NoC). We also calculated LoC and NoC needed to develop LSP
plugins for the three considered editors to estimate the effort
needed to support a new editor. The degree of reusability of type
systems across different languages is measured with two metrics:
Normalized Absolute Reuse Degree and Operator Conditional
Reuse Degree.

This work is validated by answering the research questions:

RQ; To what degree is it possible to streamline by associating
variants to language artifacts?

RQ, To what degree is it possible to automate the generation of
LSP clients, lowering € to 1?

RQ; Can the language server be automatically generated start-
ing from the Typelang variants lowering L to N'?

Structure. The rest of the paper is organized as follows.
Sect. 2 provides foundation, terminology, and background infor-
mation. Sect. 3 introduces the variant-oriented programming
paradigm and cross-artifact coordination layer, providing a for-
mal definition of the concepts. Sect. 4 presents the Typelang
family of DSLs and how it can be used to implement type sys-
tems in a modular, composable, and reusable way. Sect. 6
presents the case study and provides the answers to the research
questions. Sect. 5 shows how the language server generation
can be modularized and reused by automatically generating it
for each artifact part of a language variant using its specific
Typelang variant. Sect. 7 discusses related work. Finally, Sect. 8
concludes the paper and outlines future work.

3The notation N << T means that the number of type systems N is much
smaller than the number of languages T'.
“https://github.com/graalvm/simplelanguage

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Language . Separate LS LS LSP Plugin
Worlfber:gch Modularity ComI;)ilation IDE Generation Modularity Generat;gon
JustAdd [47] © O (@) @) @) @)
Melange [45] o O 3rd p. * * *
MontiCore [58] © © o O @] O
MPS [137]) O [] * * *
Rascal [77] O O [} @] O O
Spoofax [73]) © ° * * *
Xtext [16] @) © [] ([] @) @)
Neverlang [135] @ ° 3rd p. * * *

Table 1: Comparison of language workbenches in terms of modular development support, separate compilation support, IDE support, language server generation,
language server modular development, and LSP plugin generation. The @ symbol indicates full support, O no support, © limited support, @ fine-grained
modularization, @ coarse-grained modularization, and % indicates no support; however, based on our motivation, it should theoretically be achievable.

Editor Server

Language-agnostic
editing support

Language-specific
editing support

Editing actions LSpP

¥

Text changes

Language actions

0

Text Changes

Figure 2: LSP approach to language support. Borrowed from [122]

2. Background

We briefly introduce the main concepts and technologies
relevant to our work.

2.1. Language Server Protocol

In 2016 Microsoft, RedHat and Codenvy defined the LSP. It
is a JSON-RPC based protocol that describes the communication
between a language server code editor using an LSP plugin. The
LSP permits to decouple a language-agnostic editor from the
language-specific features, as shown in Fig. 2. The language
server provides language-specific analysis, such as go to defini-
tion, semantic highlighting, and error checking, while the editor
focuses on providing a user-friendly interface and managing the
overall development environment. This separation of concerns
allows developers to use their preferred editor while benefiting
from language-specific features provided by the language server.
Consequently, the LSP reduces the number of combinations to
implement the language server and editing support from £XE to
L + &, where L is the number of languages and £ is the number
of editors (see Fig. 1) [122, 117]. This reduction is achieved
by decoupling the implementation of the editing support from
the editor. Since its introduction, the LSP has gained significant
traction within the development community. Many popular pro-
gramming languages> now have language servers, and various
editors support the protocol, making it a de facto standard for
language support.

The set of commands that a language server can handle is
defined by the LSP specification®. The specification defines

Shttps://microsoft.github.io/language-server-protocol/implementors/servers
Shttps://microsoft.github.io/language-server-
protocol/specifications/Isp/3.17/specification

four categories of commands: language features, text docu-
ment synchronization, workspace features, and window features.
The LSP client usually triggers the commands in response to
user actions, such as opening a file, typing, or interacting with
the editor’s UL. The language features respond to requests
related to the language semantics, such as code completion,
hover information, and go to definition. These requests are sent
as a tuple of TextDocument and Position objects, where the
TextDocument represents the content of the file being edited, and
the Position represents a specific location in the file. The fext
document synchronization category is responsible for keeping
the language server up-to-date with the editor’s content via no-
tifications, such as textDocument/didOpen to notify the server
that a document has been opened, textDocument/didChange
to notify the server that a document has been modified, and
textDocument/didClose to notify the server that a document
has been closed. The workspace features category provides
commands to interact with the workspace. A workspace is a
collection of files and folders that are opened in the editor. The
commands in this category allow the language server to inter-
act with the workspace, such as workspace/symbol to search
for symbols in the workspace, and workspace/configuration
to retrieve the workspace configuration. The window features
category provides commands to interact with the editor’s UI,
such as window/showMessage to display a message to the user,
window/showMessageRequest to display a message with a set of
actions, and window/logMessage to log a message to the editor’s
console.

2.2. Neverlang in a Nutshell

The Neverlang [30, 35, 132] language workbench promotes
code reusability and separation of concerns in the implementa-
tion of programming languages, based on the language-feature
concept. The basic development unit is the module, as shown in
line 1 of Listing 1. A module may contain a reference syntax
and could have zero or multiple roles. A role, used to define
the semantics, is a composition unit that defines actions that
should be executed when some syntax is recognized, as defined
by syntax-directed translation [1]. Syntax definitions are defined
using Backus-Naur form (BNF) grammars, represented as sets
of productions and terminals. Syntax definitions and semantic
roles are tied together using slices. Listing 1 shows a simple
example of a Neverlang module implementing a backup task of

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

1 module Backup {

2 reference syntax {

3 Backup: [Backup]<— "backup" [String] [String]
4 Cmd: Cmd/A4— Backup;

5 categoyies : Keyword = { /backup" };

6 }

7 rolefexecution) {

8

9 String src = string, dest : string;
10 $$FileOp.backup(src, dest);

11 }.

12 }

13}

14 slice BackupSlice {

15 concrete syntax from Backup

16 module Backup with role execution

17 module BackupPermCheck with role permissions
18 }

19 language LoglLang {

20 slices BackupSlice RemoveSlice RenameSlice
21 MergeSlice Task Main LoglLangTypes

22 endemic slices FileOpEndemic PermEndemic

23 roles

24 syntax < terminal-evaluation < permissions : execution
25}

Listing 1: Syntax and semantics for the backup task.

the LogLang LPL. Reference syntax is defined in lines 2—6; the
categories (line 5) are used to generate the syntax highlighting
for the IDEs. Semantic actions may be attached to a non-terminal
using the production’s label as a reference, or using the position
of the non-terminal in the grammar, as shown in line 8, num-
bering start with O from the top left to the bottom right. The
two String non-terminals on the right-hand side of the Backup
production are referenced using 1 and 2, respectively. Each role
is a compilation phase that can be executed in a specific order,
as shown in line 24. In contrast, the BackupSlice (lines 14—18)
reveals how the syntax and semantics are tied together; choosing
the concrete syntax from the Backup module (line 15), and
two roles from two different modules (lines 16—17). Finally, the
language can be created by composing multiple slices (line
20). The composition in Neverlang is twofold: between modules
and between slices. Thus, the grammars are merged to generate
the complete language parser. On the other hand, the semantic
actions are composed in a pipeline, and each role traverses the
syntax tree in the order specified in the roles clause (line 24).

2.3. Software and Language Product Lines

Variability-rich software systems development leverages
principles from product line engineering, commonly referred
to as feature-oriented programming [113] and software product
line [37] engineering. An SPL consists of a family of software
products, where their similarities and differences are character-
ized by their features. A feature is a unit that provides a piece
of functionality that satisfies a requirement, represents a design
decision, or corresponds to a stakeholder’s interest. A key task
in SPL engineering is feature modeling, which involves creating
and maintaining a feature model. The concept of feature model
was first introduced by Kang et al. [71] in the FODA method and
serves to represent the variability of a system through its features

and their interdependencies. In SPLs, the feature model formal-
ism is essential for configuring software products by defining
valid feature sets, known as configurations. A feature is con-
sidered active if it belongs to the selected subset of features in
a configuration, while all other features are deemed inactive.
The structure of a feature model implicitly captures feature de-
pendencies by specifying mandatory, optional, alternative, and
grouped features, alongside parent-child relationships, where a
feature can only be active if its parent features are also active.

On the other hand, the development of families of pro-
gramming languages and DSLs has gained popularity among
researchers and practitioners [106, 88, 40, 143]. Similar to
other software, DSL interpreters and compilers can be designed
around the concept of product line. When a SPL is applied to
the implementation of a programming language, each product
corresponds to a language variant taking the name of language
product lines [86]. LPLs, widely used [14, 31, 50], have been
successfully used in both GPLs [33, 85, 86] and DSLs [61, 134,
133, 141]. Feature-oriented programming [4, 41, 114] embraces
the idea of modularizing software systems into feature modules,
which encapsulate specific functionality and can be composed
with other feature modules to form a software system; similar
to an aspect module that encapsulates a crosscutting concern
in aspect-oriented programming [75, 76, 90]. Using feature-
oriented programming in language development, a family of lan-
guages [93] can be defined by composing feature modules [140],
and a language can be seen as a product of the family. A special
case of a product line is the multi product line [123, 124, 125],
where multiple product lines are integrated into another software
product line.

3. Foundational Concepts Overview

As noted by Holl et al. [64], “managing a set of interdepen-
dent software product lines involves numerous challenges”, e.g.
ensuring coexistence among product variants within the same
system. Poorly coordinated variant management can increase
system complexity and hinder maintainability. To mitigate this,
it is essential to adopt programming and architectural approaches
that explicitly support per-artifact variant integration, thereby
simplifying the process and minimizing the need for source code
modifications to either the system or the variants. To this end,
we propose the variant-oriented programming paradigm and the
cross-artifact coordination layer as two components that enable
the integration of product variants into a complex system.

3.1. Variant-Oriented Programming Paradigm

Overview. We define the variant-oriented programming as
a programming paradigm in which product variants are treated
as first-class entities within a unique software system, referred
to as variant-oriented software.

Fig. 3 illustrates, both abstractly and concretely, the
variant-oriented programming paradigm, in which a
(modular) language variant—referred to as variant-
oriented software—is defined as a subset of artifacts
associated with one or more features for the Typelang

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

and the LSP variant. These variants are defined by the
Typelang features and LSP languages, respectively.

This approach aims to improve reusability, modularity, and main-
tainability of software systems. A variant-oriented software
is designed to support multiple product variants by providing
shared contexts that drive the interoperability among variants.
Variants interact with the shared contexts to perform their tasks,
and the shared contexts can either be global or local. Thus, the
paradigm revolves around two concepts: variants and shared
contexts.

In Fig. 3, the shared contexts are depicted as the arti-
fact’s S. Ctx. and Sym. Tab., which represents its local
contexts. The global shared contexts is illustrated by
the gray box at the bottom of the diagram, while the
local shared contexts are shown as gray boxes that do
not overlap the vertical division.

Variants are self-contained, independent entities with a feature-
based behavior and identity [22], and may also have an internal
state. The Variants can either be explicitly defined or derived
from a set of features, though the latter approach does not guar-
antee the validity of the derived variants. Shared contexts are
abstract data types that provide operations enabling the interac-
tion between variants and defining the conditions under which
they can interact. These contexts can either have a global scope,
making them accessible by all variants, or a local scope, restrict-
ing access to a subset of variants.

The dashed lines in Fig. 3 (from the Typelang features to
the TC/CI rules) indicate the possibility of deriving the
Typelang features from those used in the TC/CI rules.
Similarly, the dashed lines from the LSP features to
the Typelang features suggest that LSP features can be
derived from the corresponding Typelang features.

Conceptual Example. Let us take into consideration a
type-checker product line, which is a family of tools that includes
two distinct variants of type checking. For instance, consider a
type checker with two variants: i) assignment-statement checker,
and ii) expression checker. Both variants traverse their portions
of the AST to enforce type safety, each focusing on a distinct
node. Now, consider a compiler pipeline—representing the
variant-oriented software—which programmatically’ selects the
assignment-statement variant for modules where the correctness
of variable bindings is critical, and the expression variant for
modules where complex expression evaluation requires more
thorough analysis. Assuming the AST—serving as the shared
context—can be checked by both variants, the compiler must be
designed to support both strategies and define a clear dispatching
policy for assigning each AST node to the appropriate checker.
For instance, during the front-end pass the compiler might:

— apply the assignment-statement checker to all assignment

nodes (ensuring that the left- and right-hand sides are type-
compatible);

"We assume the compiler is configured at setup time rather than at runtime.

— apply the expression checker to nodes such as BinaryOp,
FunctionCall, and other expression constructs (verifying
operand types and return types).

This strategy interweaves detection of mis-assigned variables
with validation of expression correctness across the AST.

Integration of Variants. The variant-oriented program-
ming paradigm deliberately leaves the definitions of variants and
shared contexts open. This design choice enables the creation
of programming languages that embody the paradigm, referred
to as variant-oriented programming languages. For example,
such a language might automatically handle shared contexts and
allow variants to be defined using a syntax like:

foo = variant X of Foo ...,

where Foo denotes a family of related products.

The Typelang language variant can be defined either
explicitly, using a syntax such as

foo = variant X of Typelang ...,

or implicitly, as illustrated in Fig. 3, through a set of
features that uniquely characterize the variant. The same
approach applies to the LSP language variant.

The primary goal of this paradigm is to provide strong en-
capsulation of concerns while promoting interoperability among
product variants. By reducing coupling between variants, it en-
hances the cohesion of the software. At the source code level,
separation of concerns [69] is achieved through shared contexts,
which facilitate the integration of independent variants within
a variant-oriented software. In variant-oriented programming,
encapsulation is supported by the design of self-contained vari-
ants. These variants can be integrated into a variant-oriented
software system without requiring changes to the existing code-
base or the variants themselves. The paradigm directly addresses
the challenge of integrating product variants in complex soft-
ware systems [43, 108]. When a variant-oriented software sys-
tem serves as a product line, the variant-oriented programming
paradigm can be seen as an instance of the multi product line
model [123, 124, 125], enabling interoperability of variants in
complex systems.

However, not all product line variants can be seamlessly
integrated into a variant-oriented software, and not all software
systems can support multiple variants of a given product line.
Therefore, the concept of integration is central to the variant-
oriented programming paradigm, and certain properties must be
satisfied to ensure successful integration.

Integration Properties. Given a variant-oriented software
implementation S, a set of shared contexts Cs = {I'1,I2,...,T}}
(where each I'; is independent), and the variants v; and v; of a
product family P, we define the contextual compatibility relation
vi = v;. This relation holds between v; and v; in S wrt. a
shared context I' € Cg if and only if:

1) v; and v; are independent;

ii) they can coexist simultaneously in S;
iii) they are semantically interoperable in S; and
iv) they can cooperate on I" simultaneously.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

A variant-oriented software system must ensure the coexistence
of variants in S during the feature selection phase of the product
line engineering process [100]. If two variants cannot coexist,
they cannot be integrated into S and it should be reported as a
constraint violation. Constraints must be explicitly declared so
that verification tools can detect such violations. Independence
of variants must be guaranteed by P or S, especially if S gener-
ates the variants of P. When P is responsible for generating the
variants, it could be designed in such a way that the variants are
inherently independent or Constraints can be defined to ensure
independence. On the other hand, if S is responsible for gener-
ating the variants, it must enforce independence by design. It
could be achieved through design-time analysis (e.g., static veri-
fication of configurations) or runtime isolation (e.g., sandboxing,
namespace separation). As Briand et al. [23] pointed out for
object-oriented systems, independence is crucial for maintaining
low coupling between objects. Also, the independence of vari-
ants is essential for safe coexistence in S—i.e., if two variants
are not independent but must coexist in the same system, they
may introduce conflicts (e.g., conflicting dependencies, logical
contradictions, or runtime errors). Similarly, independence and
coexistence aim to minimize coupling between variants v; and
vj. Semantic interoperability ensures that the variants of P can
be used interchangeably in S without any semantic loss and
they interact seamlessly, thereby increasing the cohesion of S.
Finally, the cooperation of variants on I must be determined by
both I' (e.g., enforcing mutual exclusion) and S (e.g., preventing
deadlocks and race conditions). Thus, the set of variants of a
product family P can be integrated in S, denoted as P = S, if
and only if Vv;,v; € P|AT € Cs : v; =2 v;.

In Fig. 3, each artifact provides its own variant of
Typelang. These variants are designed to be indepen-
dent, meaning that they can be used in isolation without
relying on other artifacts. For instance, the Int Type
artifact can function independently of the String Type
artifact, and vice versa. This independence enables mul-
tiple variants to coexist within the same language vari-
ant, allowing developers to select only the specific arti-
facts relevant to their projects. Semantic interoperability
among variants is ensured by the locality of the artifact’s
shared context, represented by S.Ctx. and Sym.Tab.
For instance, the Assign Stmt artifact expects Sym. Tab.
to be in a specific state during execution. Semantic inter-
operability ensures that switching the Typelang variant
used in Assign Stmt does not affect the Sym. Tab. state.
Cooperation among variants is supported by the global
shared context—the gray box at the bottom of the dia-
gram.

3.2. Cross-Artifact Coordination Layer

Overview. We define the cross-artifact coordination layer
as a layer that integrates independent product variants into ar-
tifacts of an artifact-based variant-oriented software without
modifying the code of either the software system or the variants.
The cross-artifact coordination layer has as assumptions all the

properties of the variant-oriented programming paradigm. A
variant-oriented software in the variant-oriented programming
paradigm definition could not be modular, and it could not have
artifacts. The cross-artifact coordination layer, built on top of
the variant-oriented programming paradigm, requires that the
software system is artifact-based. This layer helps managing
the complexity of integrating product variants across artifacts,
particularly when a global shared context allows all product
variants in a family to interact with a set of common resources.

Fig. 3 illustrates in the horizontal dimension the cross-
artifact coordination layer, where the Typelang features
used by each artifact form the associated variant of the
Typelang family, and the same for the LSP features.

Conceptual Example. Let us bring back the type-checker
example to illustrate the concept of cross-artifact coordination
layer. Suppose that each module (the artifact) in the compiler
pipeline—the artifact-based variant-oriented software—has a
variant of the type-checker product. Each module contains a
finite number of type environments (the shared contexts) that
can be managed by the type-checker variants. Note that type
environments can be seen as shared contexts because they are
resources that can be accessed by multiple variants, if a module
admits multiple type-checking strategies. Now, consider the
global program environment—the global shared context—with
several type environments which determine the typing rules of
the entire program. The global environment is connected to each
module via interfaces. Each type environment is governed by
the type checker in the nearest module, which can be either the
assignment-statement checker or the expression checker vari-
ant. An issue arises: how can the type-checkers coordinate to
enforce consistent typing across module boundaries? To avoid
conflicting type conclusions in the global environment, a coor-
dination layer is needed, managing the interaction between the
type-checkers and the global type environments. This layer must
ensure that the variants can interoperate to maintain a coherent
type system across the program.

Fig. 3 illustrates the LSP Graph and the Fenwick Tree as
examples of global shared contexts. Each variant popu-
lates these structures by adding the features it supports.
For example, the assign statement artifact adds a node to
the LSP Graph representing the assigned variable. Ad-
ditional edges—from variable’s uses to its declaration—
are added to the LSP Graph by other artifacts.

Integration Properties. Using the notation from Sect. 3.1,
let S be an artifact-based variant-oriented software and let Ag =
{ay,ay,...,a,} denote the set of artifacts in S. Consider P, a
family of products such that P = S. The family P can leverage
the cross-artifact coordination layer if and only if, for every
v; € P and a € Ag, the following conditions are met:

1) ais defined in terms of a v;;
ii) a provides its specific shared context I' € Cs with which
y; can interact; and
iii) a global shared context of S, denoted as I's, must exist to
enable semantic interaction among all variants of P.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Language Variant

Language licamrel Language Feature 2

Artifact 3

Artifact 2

Syntax] [Syntax]

[Syntax

Instantiation

Basic Assign Language

Feature Assign Int

Assign Stmt String Type

[Int Syntax] [Asslgn ?ymax] [String Syntax]
Type Checking ?1_):: ,)a ype Checking

Variants

]Typelang

server
Variants

] Language

[Global Shared Context]

Int Feature 44 Ident {[) String Feawre 4 | | TYPelang
Feature - : | Variants

Inlay Goto || Find Sem. || Inlay Ia\z;;rlr:a’g(

oken Hmts Def. || Usages Token)| Hints : | Variants

="

Fenwick Tree]

Figure 3: The diagram on the left illustrates the two dimension of variability: (1) vertical dimension: each artifact has its own syntax and semantics defined through a
grammar and set of rules. The S. Ctx. represents the artifact’s shared context. Additional semantic for type checking (TC) and type inferencing (TI) are specified
using the Typelang DSL. The arrows pointing to the TC/CI rules indicate that the Typelang features (F1, F2, etc.) used by the artifact can be inferred from those
rules. Finally, the LSP features can also be derived from the Typelang features employed by the artifact. (2) Horizontal dimension: this dimension pertains to the
cross-artifact coordination layer. The Typelang features used by each artifact represent a specific variant within the Typelang family, and the same applies to the
corresponding LSP features. The global shared context is depicted by the gray box at the bottom of the diagram.

On the right, a concrete instantiation of the abstract diagram is shown to clarify the concept. This example models a simple assignment language with three artifact:
Int Type, String Type, and the Assign Stmt. The Sym. Tab. is the shared context concretely defined by the Assign Stmt artifact.

The first property states that a part of an artifact a, or its be-
havior, can be defined by a variant v;. Here, a part refers to
an essential component of an artifact—one without which the
artifact cannot be defined—while behavior denotes the rules gov-
erning the artifact’s interaction with other artifacts. The second
property states that each artifact ¢ must maintain a state with
which the variant v; can interact. This interaction between v;
and the shared context I" ensures that the variant has access to
the resources it needs to perform its tasks within the artifact. If
v; does not require interaction with a’s state, a a may still be
defined by v;, though in such cases, the shared context may be
empty or entirely omitted. Lastly, the third property is crucial for
integrating product variants into artifact-based variant-oriented
software. It guarantees that all variants within a product family
can interact through a global shared context, enabling consistent
and coordinated behavior across the system.

Note that, i) S can include multiple families of products,
each of which can be integrated into S using the cross-artifact
coordination layer, provided the above properties are met, ii) an
artifact a cannot be defined in terms of more than one variant
v;, iii) the global shared context I's is not simply the union of
all shared contexts of the artifacts in S, and iv) S can provide
multiple global shared contexts I['s.

In Fig. 3, as previously mentioned, the type checking
and type inferencing behavior of the artifacts is defined
by the variants in the horizontal dimension—i.e., the ar-
tifacts are defined in terms of the Typelang and LSP vari-
ants. The S. Ctx. and the concretely defined Sym. Tab.
are the shared contexts of the artifacts, which are defined
by the variants in the horizontal dimension. The lan-
guage variant—the artifact-base variant-oriented soft-
ware—provides two global shared contexts: the LSP
Graph and the Fenwick Tree.

3.2.1. Considerations

The introduction of cross-artifact coordination in artifact-
based variant-oriented software improves the management of
complex product lines. This approach extends variability man-
agement from individual artifacts to interactions across multiple
artifacts, fostering a comprehensive understanding of modular
layers and their relationships across features. It enables seam-
less integration of variants within a product family and ensures
consistent interoperability between artifacts across features and
the entire product line. By enhancing modularization, cross-
artifact coordination layer provides coherence and structure in
variant-oriented software in spite of the potential high number
of feature-artifact combinations.

4. Typelang: Towards Type Systems Composition

Bettini [18] demonstrated that type systems are crucial for
language editing support. A type system is a set of rules that
assigns a type to language constructs, ensuring program’s cor-
rectness and the proper applications of operations. Additionally,
the type system can be used to infer the type of a construct
and verify its compatibility with another construct’s type. The
overlap between linguistic components extends to their type
systems. In this section, we introduce Typelang, a family of
DSLs for defining type systems in a modular, composable, and
extensible way. Typelang aims to enhance the reusability of type
system definitions by leveraging the variant-oriented program-
ming paradigm and a cross-artifact coordination layer. Typelang
ensures the reusability of type system definitions by coupling
Typelang variants to language artifacts.

4.1. Overview.

Typelang is a family of DSLs hosted by a language work-
bench for language syntax and semantics definition. It provides

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

<program=> 1:= <type def>* <scope def>x <type infer>x}
| <type checking>% <error catching>x
| <generic op>x*

<type def> ::= "define" <type def or> [<callback or>]

<scope def> "define scope" <scope> <lw token>
[<range>] [<priority>]
“from" <t> "to" <t>
"[" "run" <nt>+ "priority" <scope>
[<callback or>] "]"
<callback or> "then" <callback>
<type def or> ::= <lw type> <lw token>
| <type> <lw token>
1:= "infer" <signature> <lw token>
[<type infer opt>]
::= <type infer spec>
| "with" "[" <lw type>+ "]"
[<type infer spec>]
<type infer spec> ::= "=>" <lw type>
<type checking> "check" <lw token> ":"
<lw type> "is" <variance> <lw type>
<generic op> ::= "enter" <scope>
| "exit" <scope>
| "init" <scope>
<error catching> ::= "try" "{" <program> "}"
["on" <exception> "{"
"covariant"
"contravariant"
"invariant"

<range>
<priority>

<type infer>

<type infer opt>

<program> "}"]
<variance>

(a) core module

<lw token> token associated to a <t> or <nt>

<lw type> = type associated to a <t> or <nt>
<nt> = non-terminal defined by the LW

<t> := terminal defined by the LW
<exception> := exception defined in a modulay way
<scope> = scopes defined in a modular way
<type> = types defined in a modular way
<signature> = signatures defined in a modular way
<callback> := callbacks defined in a modular way

(b) mutable hooks

Listing 2: EBNF Grammar for Typelang

rules for i) type definition, ii) type checking, iii) type inferencing,
and iv) error catching.

Its goal is to decouple type system definitions from a specific
technological space, enabling artifacts to be used across different
language workbenches. A specific Typelang variant can define
the type system for a whole language variant or of a number of
its language artifacts. Therefore, multiple variants of Typelang
can be used to target different language artifacts within the same
language workbench to define their type systems. The following
example illustrates a snippet of Typelang code.

infer identifier <id> with [<expr>.type] = <id>.type
check <id> : <id>.type is invariant <expr>.type

It is used to infer the type to an identifier <id> with respect
to the expression <expr>. Then, it checks if the inferred type
is invariant with the type of the expression. In Typelang, the
grammar (Listing 2) consists of an immutable core providing
essential functionalities and mutable hooks that allow adaptation
to language-specific requirements. By integrating language-
specific features with the immutable core, Typelang can be
configured into a tailored variant within its product line.

Typelang as a Family of Domain-Specific Languages.

Typelang is best understood not as a single DSL, but as
a family of DSLs, organized according to a language product
line architecture. Its design enables the systematic derivation
of language variants for different domains. For example, in
some domain-specific languages, the ability to declare func-
tions may be unnecessary. In such cases, the corresponding
Typelang variant can be instantiated without the function dec-
laration feature. Conversely, certain application domains may
require features that were not originally anticipated during the
design of Typelang. The modular nature of the language al-
lows for the extension of the feature set to accommodate such
unforeseen requirements.

Modeling Typelang as a family of DSLs rather than a single
monolithic DSL serves two primary purposes:

language restriction—it enables the creation of minimal, domain-
specific variants by omitting unnecessary language fea-
tures, thereby simplifying the language surface;

language extension—it supports the introduction of new, po-
tentially unconventional or unforeseen features, enhancing
Typelang’s ability to express a wide variety of type sys-
tems.

4.1.1. Core Module.

The fixed part of the grammar (Listing 2(a)) is designed
to support language server generation. In Typelang, the entry
point of the DSL is <program>, which consists of a sequence of
statements. New type bindings are defined using the "define"
keyword, which must be followed by two elements: a type—
either a <lw type>ora<type>—and a <lw token> to associate
the type with a token. An optional <callback> can be specified
using the "then" keyword, allowing the definition of a callback
function that is triggered when the respective binding occurs.

Type Inference. Type inference rules in Typelang are
defined using the "infer" keyword, which depends on the
presence of <signature>s. The "infer" keyword is followed
by a <signature> and a <lw token> to associate the inferred
type with a token. The <signature>s are designed to support
both structural type systems [28, 38] and nominal type sys-
tems [39, 111]. If the type is known in advance, the programmer
can help the inference process specifying the type through the
"=>" operator, followed by a <lw type> to indicate the type to
be inferred. If the type constructor is not nullary®, the "with"
keyword can be used to specify its argument types. A type con-
structor can represent various types, including a product type, a
sum type, a function type, or a parametric polymorphic type. As
an example, Fig. 4 layer @ presents the Typelang code used to
define the type inference rules for the assignment statement de-
fined in layer ®. Likewise, Section 6 shows our implementation
of Typelang with the type inference rule for the assignment state-
ment in Neverlang. For example, the following snippet defines
a type inference rule for a hypothetical assignment statement
that infers the type of the identifier <id> from the type of the
expression <expr>.

8 A nullary type constructor is one that does not take any arguments.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

try {
infer identifier <id>.token with [<expr>.type] = <id>.type

)]

Type Checking. Type checking in Typelang is defined
by using the "check" keyword. This keyword is followed by
a <lw token> and two types, separated by the variance type.
The <lw token> associates the type checking rule with a token.
The developer can explicitly define the variance type between
the two types using the "covariant", "contravariant", or
"invariant" keywords. Similar to type inference rules (shown
in boxes denoted with TC/TI in Fig 3), Fig. 4 layer @ presents
the Typelang code defining the type checking rules for the as-
signment statement, while Section 6 showcases our Neverlang
implementation. For example, the following snippet defines a
type checking rule for a hypothetical assignment statement that
ensures the left-hand side and the right-hand side share the same

type.

|check <id>.token : <id>.type is invariant <expr>.type |

Scope Management. As Cooper and Torczon [39] ex-
plained, scopes are crucial for defining the visibility and lifetime
of bindings. Typelang enables the programmer to define scopes
at the artifact level using the "define scope" keyword. The
<scope> represents the name of the scope, and the <lw token>
associates the scope with a token. Two elements can be specified:
<range> and <priority>. The former uses the *from" and "to"
keywords followed by two terminals (e.g., the { and } tokens) to
set the folding range for the language server. The latter specifies
the order in which scopes are executed; each <scope> automati-
cally defines a priority level, but the programmer can specify the
scope’s priority within square brackets using the "run" keyword,
followed by a sequence of non-terminals, the priority level, and
an optional <callback>. This configuration indicates that all
the non-terminals should be executed with the specified priority
level. Note that the language workbench must provide a way for
the programmer to define a total order between priority levels.
The "enter" and "exit" keywords, followed by the <scope>,
are used to define the scope’s entry and exit points. Typically,
this involves pushing and popping the scope from a stack. For
example, the following snippet defines a scope named module
with a priority level with the same name, which is executed upon
entering the module scope

define scope module <mod> [
run <mod> priority module

]

Error Handling. Some operations may fail during the
type checking and type inference phases. The "try" and "on"
keywords are used to define error-handling rules. If an error
occurs during the "try" block, the "on" block is executed. If
the "on" block is not specified, the error is automatically caught
and passed to the compilation helper (see Sect. 4.2).

Root of the Scope Hierarchy. Finally, the "init" key-
word is used to define the root of the scope hierarchy tree, fol-
lowed by the <scope> to specify the primary scope. Note that if

the <scope> used in the "init" keyword should have the highest
priority level because it is the first scope to be executed during
the type checking and type inference phases.

4.1.2. Mutable Hooks.

The variable part of the grammar (Listing 2(b)) entails the
concepts of <scope>, <type>, <signature>, and <callback>.
For example, an implementation of the int type can be hooked
to <type> to create a Typelang variant with definition, infer-
ence, and integers type checking capabilities. This enables
two main reuse opportunities: i) the resulting Typelang vari-
ant can be leveraged to define multiple type systems involv-
ing similar types; and ii) The int type can be reused in dif-
ferent Typelang configurations. The concrete implementations
of <scope>, <signature>, <type>, and <callback> hooks can
be developed independently, allowing them to be reused across
various Typelang variants.

Typelang Configuration. Configuring a Typelang DSL
and implementing Typelang-based type systems primarily focus
on the <scope> and <type> concepts. For instance, if a language
artifact defines two scopes (function and class) and two types
(int and float), then the corresponding Typelang variant grammar
will include the following definitions:

<scope> ::= "function" | "class"
<type> ::= "int" | "float"

Such types are then involved in the definition of <signatures>s,
to provide a way to specify the expected types of an expression.
The <signature>s hook can be used to decorate untyped parse
trees or abstract syntax trees with type definitions and inference
rules. For example, consider the function call let res = add(1,
2); in Rust, where add is a parametric polymorphic function
over the type T, defined as:

|fn add<T: std::ops::Add<Output = T>>(a: T, b: T) ->T {a+ b }

Although the monomorphization phase has not yet been per-
formed,” the <signature> add: (T, T) -> T can be used to
infer the type of the res identifier based on the argument types
of the function call.

The type system can be further refined through the <callback>
hook, where each callback serves as a unique identifier for a
function invoked in response to a specific event. Each of these
core concepts is abstract, and the corresponding Typelang rule
is flexible, enabling programmers to define their own <scope>,
<type>, <signature>, and <callback> elements. The seman-
tics of the variable parts of Typelang variants are not predeter-
mined; their implementation is left to the language workbench.
In Listing 2(b), such cases are indicated by the phrase “de-
fined by the language workbench”, meaning the left-hand side
of the production rule is fixed, while the right-hand side must
be provided by the language workbench.!® For example, <t>

9Monomorphization typically occurs after the type checking and inference
phases.

10We assume that the fixed part of the Typelang grammar is in a language
workbench-compatible format; otherwise, it must be adapted accordingly.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

——>» Is stored in]

- 0: : : it
: H Stack : class X { " w
: , x = 0; i
- i [Function Scope 0
e
oz 1 [Class Scope &)« return (®) + 1;
15}
% }
A ’(% (X) Global Scope) }
o Artifact Function Artifact Assignment Artifact Class
=} \
b .
e ° Function Decl Class Decl
[}
: J J
53
=}
Function Declaration Syntax Assignment Declaration Syntax Class Declaration Syntax
<fn decl> ::= <ty> <id> <assign decl> ::= <id> <cls decl> ::= ‘class’ <id>
ot €’ <args>)’ ‘=7 <expr> ‘;’ “{> <members> ‘}’
® = {> <stmts> ¢}’ <members> ::= <assign decl>
>
n .= .
<args> 1i= <arg> Note: The <assign decl> is meant to | <fn decl>
| <arg> ¢,’ <arg> be a statement included in the <stmts>
definition
Function Declaration Typelang Code Assignment Declaration Typelang Code Class Declaration Typelang Code
o0
g try { try { try {
e :.J: eval <id> infer [l <id>.tok eval <id>
= define scope - <id> with [<expr>.ty] => <id>.ty define scope - <id>
from ‘{> to }’ [check <id>.tok : from ‘{’ to ‘}’ [
run <args> <stmts> priority - Py 148 ARVEEIETS SRR o iy run <members> priority -
] } on InferenceError {]
} define <expr>.ty <id>.ty }
}

Figure 4: The diagram shows the four layers of Typelang in action. Execution Layer ®: Divided into three vertical sections. The left shows a function scope created
within the global scope; the right shows a function scope within a class scope. The center displays the contents of each scope and their hierarchical relationships.
Declaration Layer @: Includes three artifacts—function, class, and assignment. Each artifact contains the same information shown in Figure 3. Scopes are defined
modularly, and the grammar supports nesting. Syntax Layer ®: Defines the artifacts’ syntax modularly. From this grammar, the language workbench generates the
hooks used in the Typelang DSL. Typelang Layer ®: Contains the Typelang code defining type checking and inference rules for the artifacts (denoted in Fig. 3 by

TC/TI boxes). Typelang features—called hooks—are highlighted in teal.

and <nt> serve as placeholders for terminal and non-terminal
symbols associated with syntax tree nodes, as defined by the
language workbench. Similarly, <lw type>and <lw token> ful-
fill analogous roles, referencing syntax tree nodes. However,
this distinction highlights whether nodes are accessed directly
or used to retrieve their type (<lw type>) or source code (<lw
token>). The <exception> construct is designed to be modular
and can be raised during the type checking and inference phases.
The language server can catch these exceptions and provide
feedback to the editor.

4.2. Collection and Assembling Phases

Overview. Inspired by the application engineering phase
of product line engineering [112, 94], the Typelang DSL relies
on: the collection phase and the assembling phase. During the

10

collection phase, the language workbench gathers all features
specified through product configurations. These configurations
can be explicitly defined by the programmer or implicitly de-
rived from the semantics of the language artifacts, following
the principles of the variant-oriented programming paradigm.
This phase determines how the Typelang variant should be gen-
erated. The assembling phase combines the concepts of product
derivation [115, 44, 65, 57, 116] and product validation. In this
phase, the language workbench creates the Typelang variant for
a given language artifact based on the features collected during
the collection phase. By assembling the Typelang variant before
the compilation phase, the necessary language features are made
available during the compilation of the language artifacts.

Collection Phase. In our proposal, the collection phase
gathers all definitions to generate the Typelang variant for a

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

given language artifact. The variant generation is demanded
to the assembling phase. Any definition that should be used
during assembling phase but not collected by the collection
phase will cause the assembling phase to fail. Therefore, the
Typelang DSL grammar is not fixed: it depends on the lan-
guage artifact requirements and it is defined before the artifact
is processed. We define a feature box as a concrete implemen-
tation of a feature. A feature box contains all the necessary
information to define the variable part of the Typelang DSL
grammar. A feature box combines concepts from feature mod-
ules [9, 72] in feature-oriented programming and delta modules
in delta-oriented programming [42, 80]. From feature-oriented
programming, we inherit the concept of a feature module as a
modular unit that encapsulates a feature definition [3]. From
delta-oriented programming, we inherit the concept of a delta
module as a unit that specifies changes to be applied to the core
module to implement further products by adding, modifying,
and removing code [127].

Feature Box. Each variable definition must be encapsu-
lated within its own feature box, such as a language workbench
module or a Java class. Feature boxes should be independent
but composable when needed. A feature box acts as a provider
of a definition and contains all relevant LSP information as-
sociated with that definition. For example, a feature box can
define a <type> and specify whether it serves as an LSP seman-
tic token—a token enriched with semantic information used to
provide language-aware editor features such as semantic high-
lighting and code navigation. A concrete example of a feature
box is shown in Listing 4. To facilitate development, language
workbenches should provide default feature boxes for common
definitions while allowing developers to define new ones mod-
ularly. This approach suggests that an increasing number of
feature boxes will likely result in more Typelang variants.!!
All feature boxes are designed to be reusable across multiple
language artifacts to form distinct Typelang variants. These vari-
ants can be applied across different languages and, by extension,
across various language variants. However, a feature box may
depend on—or rather, require—the existence of another feature
box to work correctly. Each feature box can be viewed as a
provider of a definition, and dependencies between them can
be considered requirements necessary to utilize the definitions
provided by other feature boxes. This brings forth to the need
for a composer. The composer, e.g., a language workbench
language compilation unit, is responsible for collecting all the
necessary feature boxes to generate Typelang variants.

Assembling Phase. The composer is responsible for dis-
tributing all necessary information to the internal components
of the language workbench to support the type checking and
type inferencing compilation phases using a specific assembled
Typelang variant. A proper Typelang variant can be automat-
ically generated for each language artifact, as the collection
phase solely collects the features actually used in the semantics
related to type checking and type inferencing rules. This ap-
proach avoids the need for an explicit, verbose form—such as

Note that adding new feature boxes may not necessarily lead to new variants.

11

1 public interface SymbolTableEntry extends Indexable {
2 EntryKind entryKind();

3 EntryType entryType();

4 EntryDetails details();
6

7

8

default Location location() {
return entryType().token().location();

}

default <T extends Type> T type() {
return (T)refType().get();
12 }

default AtomicReference<Type> refType() {
return entryType().refType();
16 }

default boolean isAssignableFrom(
SymbolTableEntry ste, Variance variance) {

20 return type().isAssignableFrom(ste.type(), variance);
21 }
22| }
Listing 3: The SymbolTableEntry interface.
ty_1 = variant {F1, F2, ...} of ty—favouring a desugar-

ing mechanism that generates the variant based on the features
used in the semantics of the language artifact. With this ap-
proach, the product configuration, product derivation, and prod-
uct validation phases of the application engineering phase can
be automated. Figure 3 shows the assembling phase for a given
language artifact (the dashed gray arrows). For instance, the
type checking semantics of Artifact 1 uses the Typelang fea-
ture F1, while the type inferencing semantics relies on feature
F2. The composer collects the feature boxes required by F1
and F2 to generate the appropriate Typelang variant for Artifact
1. The teal-colored layer (Fig. 4 @) highlights the Typelang
features used by different artifacts, introduced as hooks in the
Typelang grammar. Indeed, the other Typelang code shown in
Fig. 4 is the core of the Typelang variant. Each variant only
includes the features needed to define the type checking and
type inference rules for the corresponding artifact and remains
unaware of features used by other artifacts. The type checking
and type inference semantic actions assume that the required
features are present in the Typelang LPL and that the composer
can successfully collect them. A number of issues may arise
during the collection and assembling phases. For instance, if a
feature box declaration—such as fn, id, and cls in layer @ of
Fig. 4, or the identifier used in Listing 7—is not found during
the collection phase, it should be treated as a parsing error.

4.3. Typelang Integration in Modular language workbenches

Using the notation introduced in Sect. 3, let the variant-
oriented software S represent a modular language workbench,
and let P denote the Typelang LPL. The shared contexts T'; € Cs
are the tryping environments. A typing environment is a map from
identifiers to symbol table entries, which contain information
such as the identifier type and additional metadata (details in
Sect. 5). As shown in Listing 3, a symbol table entry is a data
structure that contains information about the type associated to
the entry, the location in the source code, and other relevant
information.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Global Scope

Typing Environment (TE)

TE Entry 1

‘ Table Entry 1 | ‘

TE Entry N

J Table Entry N

Type Definition M

Typing Environment]

Type Definition 1

Scope 1 Scape X

[Typing Environment] [

[Ty])t Don] [Tm‘ DU”[]

=}] :”‘ 3 ca

Figure 5: The modularity and extensibility of Typelang, illustrating the inde-
pendent definition and composition of scopes, types, and signatures as reusable
building blocks that can be assembled into language-specific variants at compile-
time. The diagram demonstrates a simplified version of Typelang scopes struc-
ture, with each scope associated with a typing environment that contains the
unordered pairs of identifiers and table entries and types.

[Typt' Dm] [T;pc vaA[]

Variant-oriented Programming. The composer gener-
ates Typelang variants in accordance with the principles of
variant-oriented programming. It enforces the first property,
that is, that each variant is generated for its language artifact irre-
spective of the other variant generations. Moreover, each variant
is also unaware of the other variants existence. The coexistence
property is satisfied because S, as a modular language work-
bench, perceives v; and v; as different configurations of the same
DSL, which are already used in modularized language artifacts.
The language workbench enforces constraints on the Typelang
variants through internal APIs, which serve as an abstraction
layer to interact with the variants. The language workbench does
not need to be aware of the specific Typelang variant used in a
given language artifact; instead, it only needs to know how to
interface with the variants and enable their cooperation within
the same shared context I'. As a result, all Typelang variants
are considered semantically interoperable within S, as they can
be used interchangeably. The definition of a scope involves the
definition of a typing environment I'. It is the responsibility of
S to ensure correct access to I' by the Typelang variants. This
may require mechanisms such as mutual exclusion to regulate
access, handling race conditions to prevent data corruption, and
addressing potential issues related to data consistency.

Modular Scopes. Fig. 4, layer @, illustrates the Typelang
code, where the artifact function and artifact class define their
own scopes using distinct Typelang variants. The eligibility for
scope nesting is directly derived from the grammar (layer ©)
defined at the artifact level. In this example, both the artifact
class and the global scope grammars permit function scope defi-
nitions. Consequently, the relationships between scopes do not
need to be predetermined; instead, they can be established at
compile time based on the grammar of the language artifact used

12

in the language variant. Similarly, the assignment declaration
is valid within all scopes, including the global scope, function
scope, and class scope. In the left-side of layer @, the variable
x is declared within the global scope, whereas in the right-side,
it is declared within the class scope. When x is used, its value
is retrieved from the nearest enclosing nested lexical scope."?
In the first case, the value is retrieved from the global scope,
while in the second case, it is retrieved from the class scope.
According to Cooper and Torczon [39], the execution layer can
be entirely generated at compile time based on the Typelang
scopes defined within the artifact, even if the scopes are mod-
ularly defined. Proper data structures that dynamically track
the most recent binding of a free variable'? must be generated.
Being the artifacts self-contained ensures that all required fea-
ture boxes are included and foster their reuse across different
language implementations. Fig.5 expands and abstracts the stack
shown in the center of Fig. 4, illustrating the content of scopes
and their hierarchical relationships. This basic representation
could be further detailed with elements such as callbacks and
exceptions, although this is beyond the scope of this work.

Cross-artifact Coordination. Once Typelang variants are
generated and the type systems are defined, the language work-
bench can use them like a conventional type system for type
checking and type inference phases. Scopes in Typelang are
defined at the artifact level, each providing multiple type defi-
nitions along with an associated typing environment I'. A type
definition consists of the type itself and its associated signature.
With blue boxes shows in Fig. 5, I is represented as a map
linking identifiers to symbol table entries. The global scope
typing environment is initialized after the invocation of "init"
<scope>, so that the context I" and type definitions are defined
at the artifact level. Each artifact a € As provides its own inter-
operability context I' € Cs, where variant v; can operate, thus
satisfying the first property of the cross-artifact coordination
layer. As shown by Fig. 4, layer @, it is possible for an artifact
a to omit scope definitions. The omission of scope definitions
occur for several reasons:

— alanguage does not require scopes—e.g., a simple calcu-

lator language;

— not all artifacts want to define namespaces—e.g., an as-

signment statement;

— an artifact depends, after the composition phase, on the

scopes defined by other artifacts—e.g., a function call.
Moreover, each artifact a can be defined in terms of a variant v;,
given that its type checking and type inferencing semantics are
derived from v;. Consequently, as long as the behaviors of a are
defined with Typelang, the artifacts are indirectly defined by the
Typelang variants. Although not depicted in Fig. 5, the global
shared context I'g acts as a repository for common resources
accessible to all Typelang variants for seamless interaction. This
context could be implemented as a priority queue containing
compilation unit tasks (further details in Sec.5), which are exe-

'2According to Cooper and Torczon [39], “scopes that nest in the order they
are encountered in the program are called lexical scopes”.
13A free variable is a name defined outside the current scope.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

1 package neverlang.core.defaults.types;

@TypeAnnotation(Type.FN)
public class TypeFunction extends AbstractTypeFunction {

@Override

@DocumentSymbol

public SymbolKind documentSymbol(SymbolTableEntry entry) {
return super.documentSymbol(entry);

© o o u w

11
12 }

14
15
16
17
18
19 }

@Override
@SemanticToken({SemanticTokenTypes.Function,
SemanticTokenTypes.Operator})
public String semanticToken(SymbolTableEntry entry) {
return super.semanticToken(entry);

21
22
23

@Override

@InlayHint

public InlayHint inlayHint(SymbolTableEntry entry) {
return super.inlayHint(entry);

25 }

27
28}

Listing 4: The TypeFunction feature box.

cuted lazily and in increasing priority order. Variants interact by
adding their tasks to the queue using the "run" keyword.

5. Generative Modular LSP Design

Overview. The LSP defines a common API for language
servers, enabling a single implementation to be used across
multiple editors (clients). It operates on a client-server model,
communicating over pipes or sockets. Language server imple-
mentations are created manually in a top-down fashion, with
significant time invested in complex data structures and algo-
rithms [59]. In contrast, we propose a bottom-up [85], modular
approach to generate language servers. This method leverages
the variant-oriented programming and cross-artifact coordina-
tion principles. LSP capabilities are conceptualized as separate
feature boxes, composed at the artifact level for a more flexible
and reusable implementation.

LSP Features and Feature Boxes. The features of the
language server variant—represented as solid gray arrows in
Fig. 3—are derived from the Typelang feature. Since a Typelang
feature box could require multiple LSP features, the language
server variant is composed of the union of the features pro-
vided by the feature boxes used by the artifact. Thus, the lan-
guage server variant is tailored to the artifact’s needs, without
unnecessary features and feature boxes contain the necessary
information to provide LSP capabilities. The language server im-
plementation emerges through a generative process involving the
definition of feature boxes, their Typelang representations, and
their composition. Fully modular feature boxes—i.e., without
endogenous bindings—extend their modularization and reusabil-
ity to the LSP capability implementations, so that type system
components can be reused across languages. Finally, this ap-
proach (Fig. 2) takes advantage of the LSP’s language-agnostic
nature [107, 121]. Since the protocol imposes no restrictions

13

on language server implementation, each LSP implementation
needs to comply with the protocol specification, with no concern
for the other implementations.

5.1. Language Server Generation Process

In the LSP context, the implementation of a language server
can be seen as a generative process based on Typelang feature
boxes. As explained in Sect. 4, the feature boxes encapsulate all
the needed information to generate the language server imple-
mentation.

Feature Box Definition. For example, Listing 4 shows the
TypeFunction feature box which implements the LSP capabil-
ities for semantic tokens, document symbols, and inlay hints.
In our implementation, the collector mechanism is realized as
an annotation processor. Specifically, the @TypeAnnotation
annotation and the value Type.FN (line 5) tell the annotation
processor to bind the TypeFunction Java class to a feature box
of kind function type. The Type.FN identifier in the annota-
tion corresponds to the kind of feature box and becomes part
of the variable section of Typelang’s grammar whenever the
feature box is employed. The @ocumentSymbol (line 9) and
@InlayHint (line 22) annotations mark specific methods, en-
abling the client to collect document symbols and provide inlay
hints for the function type. At line 15, the @SemanticToken an-
notation is followed by a list of SemanticTokenTypes—a class
provided by LSP4J—that specifies the token types, allowing the
client to semantically highlight source code based on these types.
Overall, Listing 4 consolidates all LSP capabilities related to
the function type without assumptions on other language fea-
tures: the feature box is then reusable across any language with
functions, regardless of its broader structure.

Feature Box Collection. All annotated classes are col-
lected only if the feature box associated with the specified kind
is actually used by Typelang in a semantic action. Consequently,
LSP-related annotations are processed only when the correspond-
ing feature box is employed in the artifact, and the code for the
respective language server features is generated only under these
conditions. This process is repeated for all feature boxes used
by Typelang within an artifact and subsequently for all artifacts
associated with a language implemented in the language work-
bench. The union of all capabilities specified by the feature
boxes constitutes the active LSP features for the language server
variant of the artifact. Other modular language workbenches can
implement the collector mechanism and similar methods using
alternative strategies, such as visitor patterns [54].

5.2. Building Blocks for the Language Server

A language server implementation requires in-memory run-
time data structures to properly work, providing all the necessary
information to the LSP client. The language workbench is in
charge of providing the necessary data structures to generate the
language server implementation. Among these data structures,
some are automatically populated by Typelang during the execu-
tion of the tasks, while others are still automatically populated,
but are used by the language server to provide correct responses

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

to the LSP client requests. This section provides an overview of
the data structures that the language workbench must provide to
generate the language server implementation.

Table Entry. The table entry is at the core of compiler
design and type systems. Out interface for the Table Entry is
shown in Listing 3. It must contain at least the following fields
to provide the information to the LSP client:

— the entry type, which represents a symbol—ideally a lexi-

cal token—in the source code;

— the entry kind, which represents the kind of the usage

of the symbol in the source code—e.g., a definition or a
reference to a symbol;

— the entry location, which represents the location of the

symbol in the source code;

— the entry range, which represents the range of the symbol

in the source code.

Some feature box provided capabilities need a Table Entry to
compute a query and to generate the language server imple-
mentation (see Listing 4 at line 10, 15 and 23). In addition to
the fields, the implementation includes routines for computing
information required by the LSP client. For example, the isAs-
signableFrom routine determines whether the right-hand side of
an assignment is compatible with the left-hand side, enabling the
client to deliver precise diagnostics. Further, behind the method
invocation at line 24 in Listing 4, the getSignature routine is
called to provide the signature of the symbol used in the inlay
hint. Hovering capabilities are provided by the getHover routine,
which is used to provide relevant information upon hovering
over a symbol in the code. The LSP provides a wide range of
capabilities that can be implemented by the language server,
for more details see the documentation for either the LSP or
LSP4]J. All the pieces of information regarding table entries are
collected within the typing environment (shown in Fig. 5); the
typing environment is a data structure that maps the relevant
symbols in the source code to their respective table entry. The
language workbench generates the code to populate the table
entry at runtime. Thus, the language server only needs to access
the data structure and provide the information to the client.

Compilation Unit. For each scope defined in Typelang,
a Compilation Unit is created and associated to a Compilation
Unit Task. The compilation unit is a data structure that contains:
the scope, which contains the typing environment I" asso-
ciated with it;
a reference to the stack of scopes shown in Fig. 4;
the type inference strategy [54], used by the language
workbench to infer the types of the expressions in the
scope;
the associated compilation unit task with the associated
priority of the task;
the parent compilation unit, which is used to ensure the
tasks are executed in the correct order.
The language workbench generates the code to populate the
compilation unit at runtime. The compilation unit serves as a
container for the tasks that are executed to bring the compilation
unit to a fully typed state via the type inference. Without a
fully typed compilation unit, the language server cannot provide

14

correct information to the client. Combining compilation units
and incremental parsers with error recovery [2, 55, 119], a small
modification made to the source code triggers the execution of
only the tasks related to the compilation unit and its scope, as
well as any of its dependencies. Other tasks do not need to be
repeated.

Compilation Unit Task. The compilation unit tasks are
needed to solve the following limitation: in any given moment,
a compilation unit may not be fully typed—e.g., because the
type of a symbol is not yet defined or was not inferred yet. Such
an example is shown in Fig. 6: the sum identifier in Task #1 (on
the left side) with priority fun is highlighted in red because it
is not typed yet. The language server cannot provide correct
information to the client if the compilation unit is not fully typed.
The compilation unit task component contains the following
fields:

— the reference to the language workbench context, used to

access a mutable reference of the AST;

— a procedure,'* which accept a language workbench con-
text and performs some operations on it, such as modify-
ing the AST;

— the priority of the task.

As discussed in Sect. 4, the priority is used to order the tasks
in the language workbench. To ensure modularity, the feature
boxes are unaware of the existence of any other priorities except
their own. However, the language workbench and the language
server must have a global knowledge of all existing priorities to
order the tasks correctly, thus bringing the compilation unit to
a fully typed state. This dependency should be declared exoge-
nously, using a language construct that specifies the evaluation
order of tasks without affecting the individual feature boxes.
This solution embraces the Hollywood principle [131, 52] de-
sign pattern' guaranteeing that the separation of concerns and
the reusability are preserved. To provide a visual representation
of the tasks and their priorities, Fig. 6 presents an AST with
associated compilation unit tasks denoted as boxes around the
AST nodes. By assuming a left-to-right depth-first AST traver-
sal, a task associated with the global scope is added to I's with
the highest priority. The function suml is processed before the
function sum. Since the body of suml calls sum with the formal
parameter x and an integer literal 1 as actual parameters, this
may result in an incomplete AST and related errors. Each variant
v; is responsible for creating and adding its corresponding com-
pilation unit task to the priority queue I's with the appropriate
priority level as detailed in Sect. 5.

Compilation Unit Executor. The Compilation Unit Ex-
ecutor is a component that is used by the language workbench
to execute the tasks in the correct order. It contains:

— the execution listener, which is used to listen to the execu-

tion of the tasks and report the errors to the Compilation
Helper (see the last paragraph);

14A procedure is a function that does not return a value.

5%“Don’t call us, we’ll call you” is what the Hollywood Principle is all about—
known also as Hollywood’s Law or Inversion of Control. It is a design pattern
that allows low-level components to hook themselves into a system, but the
high-level components determine when they are needed, and how.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Task #0 with Priority global

function
suml

(Task #1 with Priority fun

identifier
X return

identifier arguments
sum
X 1

\

function
sum
,—\gask #2 with Priority fun }

body

y4

-

return

bin_expr
+
X ¥

-

Figure 6: The diagram shows an AST with the compilation unit tasks associated.

the executor, which accepts a configuration and executes
the tasks concurrently according to the executor service;

the executor service, which provides routines to manage
termination and methods that can produce a Future for
tracking the progress of asynchronous tasks;

the task queue—a min-heap priority queue—in which
the task dependencies are lazily registered and resolved
during the execution of the tasks;

the task provider which is used to provide the tasks to the
task queue.

The compilation unit executor is used to run the tasks in the
correct order, and it is essential for the language server to bring
the compilation units to a fully typed state. Concurrency and
asynchronous issues could arise during task execution, and the
compilation unit executor is in charge of managing these issues.

Fenwick Tree. The Fenwick Tree [51, 126]—also known
as binary indexed tree—is a data structure that provides search
and insert operations in O(logn) time complexity. In our ap-
proach, we decided to use the Fenwick tree to represent the
lexical scopes of the source code. Basically, the Fenwick tree
is a global shared context I's and it is paramount to the lan-
guage server to provide responses to the LSP client efficiently.
The language server leverages the Fenwick tree to provide the
folding range capability to the client and to efficiently perform
scope-based search activities. During the editing, the client can
remove or add new scopes, and the Fenwick tree must be up-
dated accordingly. Note that the removal of a scope causes the
removal of one subtree of the Fenwick tree. Just as all other data
structures, the Fenwick tree is populated automatically by the
language workbench during the tasks execution.

LSP Graph. The LSP Graph is the second global shared
context I'’; used by the language server. It is a symbol depen-
dency graph [78]. Its nodes represent the symbols within the
source code and its edges represent dependencies between sym-
bols. A symbol can be a type, a function, a variable, etc. The
dependencies between the symbols are based on the usage and

15

the kind of the symbol in the source code. However, as soon
as the name resolution phase is completed, the language work-
bench starts to populate the LSP Graph with the dependencies
between source code symbols. The LSP Graph is used by the
language server to provide the FindReferences, GoToDefinition,
and CodeCompletion features to the client. It is important to
note that the LSP Graph is populated automatically by the lan-
guage workbench during the tasks execution. Without it, may
LSP features would not be available. Note that the edges are not
necessarily symmetric. This means that if a symbol A depends
on a symbol B, it does not mean that B depends on A. The LSP
Graph is used by the language server to provide the information
to the client efficiently.

Compilation Helper. Data structures face challenges due
to the exogenous approach to modularity and a lack of awareness
of other components. Data related to the creation of these data
structures is provided directly via Typelang or indirectly via the
language workbench. The Compilation Helper, introduced in
this approach, aims at providing a centralized place to manage
the data structures and the tasks execution, ensuring that the data
structures are populated correctly and that the tasks are executed
in the correct order. Thus, the compilation helper represents
the external component declaring the bindings between all the
aforementioned (independent) components—i.e.:
the root of the compilation units;
the compilation unit executor;
the Fenwick tree;
the LSP Graph.

The language server uses the compilation helper to inter-
act with the LSP graph and to queue any tasks. A compilation
helper reference is passed to the language server variants to allow
variants to interact with the data structures and with the tasks exe-
cution. Additionally, the compilation helper collects error events
reported by the execution listener. These may include Typelang
exceptions or injected errors detected in the generated code by
the language workbench. The compilation helper is responsible
for making error management decisions. For example, if the

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

error is related to the type inference, the compilation helper can
decide to re-execute the tasks in the compilation unit, achieving
a fully typed state. As a centralized place in which all the errors
are managed, the compilation helper can either choose i) to han-
dle the errors as compilation errors—e.g., stop the compilation
and emit the errors in standard error/output—or ii) to update the
data structures, handling the errors as LSP errors—e.g., keeping
alive the language server and emit the errors to the client. Note
that, the Compilation Helper is used to manage both the type
system errors and reusing the same error handling mechanism
for the language server errors.

Typelang variants are essential to the language server, both
for the errors it provides and for the data structures it popu-
lates. Each artifact derives its language server variant from the
Typelang variant used to implement the language. The collecting
and assembling phases, as well as type definitions, are inherited
from those of Typelang. A language server variant is composed
by the features provided by the Typelang feature boxes, used
by the respective artifacts. This means that each artifact is un-
aware of all the features offered by the LSP, knowing only those
that are actually needed by the artifact itself. An artifact with
its feature boxes can be shipped to another language variant to
correctly generate the language server variant. The reusability is
guaranteed by the exogenous feature boxes definition approach:
LSP capability implementations and type system components
can therefore be reused across different languages.

5.3. Language Server Integration in Modular language work-
benches

By recalling the properties presented in Sect. 3, as already
done for Typelang (Sect. 4), we outline how the language server
variants can benefit of variant-oriented programming paradigm
and cross-artifact coordination layer principles when integrated
within a language workbench. As introduced in Sect. 3, let S
be a modular language workbench (our variant-oriented soft-
ware), and P be the language server SPL. P = & holds if
and only if the four principles of variant-oriented programming
are observed, meaning that the language server variants are in
=7 -relationship.

Variant-Oriented Programming. The LSP features used
to generate the respective language server variant v; are directly
provided by each feature box used by the associated Typelang
variant: for any v;,v; € P, v; and v; are orthogonal to each
other, as they are generated by different feature boxes. There
is no restriction imposed by the variant-oriented programming
paradigm on the generation of variants which depend on another
variant, as long as the :‘F -relationship is preserved. Therefore,
the independence principle of variant-oriented programming is
upheld. Unlike Typelang, the granularity of the feature activa-
tion is at the feature box level, and the language server variant
is composed by the features provided by the Typelang feature
boxes useb by an artifact. This denotes that the simultaneous
coexistence of v; and v; in S is guaranteed by construction. As
explained in Sect. 5.1, S provides the necessary data structures—
often automatically populated—to the language server variants,
providing the information to the LSP client. v; and v; must be

16

LSPClient {
generatorVersion
clientImplementations

=1

©® N O U A WN

1

10 templateGeneratorClasses
11 ,
12 ,
13 ’
14

15 1

17
18
19
20
21}

=1

languageName =
launcher =

fileExt
binPath

Listing 5: Gradle build file to generate LSP plugins and the syntax highlighting.

able to dialogue with each other to provide correct information
to the LSP client. The semantic interoperability property is
respected; it is a must-have property for the language server
variants to be able to co-exist in S. The variant-oriented pro-
gramming requires the existence of a shared contextI' € Cgs
where v; and v; can co-operate. Lots of shared contexts I' are
provided by the language workbench, such as the Fenwick tree
and the LSP graph. The co-operation is also achieved at runtime,
where the language server variants use the compilation helper to
dynamically interact with these shared contexts I'.

Cross-Artifact Coordination. Each artifact a € Ag can
be defined in terms of the language server variant v;. Or better,
if a wants to provide the LSP support for its feature boxes, it
must allow itself to be defined in terms of the language server
variant v;. The shared context provided by each artifact are two-
fold: the typing environment T—inherited from the Typelang
variant—and the compilation helper I". Each a provide the typ-
ing environment I which is populated by the Typelang variant
and it is used by the language server variants to provide the
information to the LSP client. The compilation helper is the
shared context I'” that each artifact a provides to the language
server variants to retrieve information already computed related
to the LSP capabilities. Two global shared contexts are provided
by the language workbench to the language server variants: the
Fenwick tree I's and the LSP graph I'y explained in Sect. 5.1.
I's and I'; are populated and interrogated by the language server
variants to provide the information to the LSP client. By clarify-
ing these aspects, the cross-artifact modularization layer for the
language server is achieved.

5.4. LSP Plugin and Syntax Highlighting Generation

Improvements in the editing support are also possible by
leveraging the language workbench capabilities. In general,
since the language workbenches know the syntax and semantics
of the language, generating the LSP plugin and syntax high-
lighting leads to a reduction in the effort required to provide
this support. To provide a complete editing support, the editors

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

1 module stmt.IfStatement {

2 imports { }

4 reference syntax {

5

7 categories:

8 keyword = { "if", "else" };
9 }

11

12}

Listing 6: Example of a Neverlang module that provides the implementation of
the IfStatement artifact with if and else categories made available

usually require the implementation of LSP plugins for the lan-
guage server—which is responsible for providing all the LSP
capabilities to the client—and the syntax highlighting support.
As shown by recent work, Neverlang provides the categories
introduced by Kiihn et al. [87] that have been used to generate
the syntax highlighting for LPL as a third-party plugin for the
Eclipse IDE [105]. In the same work, the authors proposed the
generation of the semantic support for the IDEs, such as the
Semantic highlighting and Debugging features by leveraging the
language workbench capabilities. Furthermore, Monticore [81],
Rascal [130] and Spoofax [74] provide the editing support for
the Eclipse IDE. For more details refer to Table 1.

Overcoming the IDE Dependency. To overcome the di-
rect dependency to the Eclipse IDE, thanks also to the advent
of the LSP and the widely used TextMate [56, 128]'® grammar,
we extend the proposed approach to provide a methodology to
generate the syntax highlighting and the LSP plugin for all the
editors that support the LSP. Developer side, a Gradle plugin
generates the necessary files for the syntax highlighting and
the LSP plugin. This aims to further reduce the effort towards
this support and increase the reusability of the language work-
benches. Listing 5 shows the Gradle build file that generates the
LSP plugin and the syntax highlighting. Developers should only
specify the fields shown in Table 2 inside of LSPClient block.

Name Line Description
generatorVersion 2 The version of the plugin
clientImplementations 3 The list of the desired editors
templateGeneratorsClasses 10 The list of the associated template generators
languageName 17 The name of the language
launcher 18 The language server launcher
fileExt 19 The extension of the language
binPath 20 An executable file containing the language server

Table 2: Fields to specify in the LSPClient block of the Gradle build file to
generate the LSP plugin and the syntax highlighting.

It is important to note the editor list and the associated template
generators can be extended by the developers to support more
editors. The support is implemented for the widely used VS-
Code [46], NeoVim, and Vim editors, including both the syntax

16ySCode is the most popular editor according to the Stack Overflow Devel-
oper Survey 2021 and it embraces the TextMate grammar implementing the na-
tive support for the syntax highlighting (see https://github.com/microsoft/vscode-
textmate)

17

highlighting and the LSP plugin. Sect. 6 will show the implemen-
tation effort in terms of LoC and the NoC. With this approach,
we embrace the opportunity offered by language workbenches
to provide the syntax highlighting elements. For instance, the
Neverlang’s categories construct as shown in Listing 6 and the
Spoofax’s ability to provide the syntax highlighting elements for
NWL as shown by Kats and Visser [73].

Syntax Highlighting Generation. Listing 6 shows how
the IfStatement artifact defines the if statement using the termi-
nal symbols if and else. In the categories block (line 7), it
exports the keyword category (line 8), which includes the termi-
nal symbols if and else. Two cases can be distinguished: 1) the
syntax element are provided by the already modularized boxes
and the language workbench can collect them and perform their
union without duplicates (e.g., the Neverlang language work-
bench), and 2) the syntax elements are provided by the language
constructs (e.g., the Spoofax language workbench). The Gradle
plugin merely needs the syntax elements to be provided, so that
the template generators can use them to generate the syntax
highlighting editor support. The Gradle plugin requires the pro-
grammer to specify, among other fields, the binPath—i.e., the
path to the jar file containing the implementation of the language
server. The server is then launched by the editors according
to the launcher field upon opening a file with the extension
specified in the fileExt field. Additionally, template generators
can be written in any JVM-compatible language, as the Gradle
plugin uses reflection to instantiate each template generator and
invoke the methods that conform to the contract defined by the
plugin interface.

6. Demonstration Case Study

We demonstrate the applicability of our approach through
a case study implemented using the Neverlang language work-
bench. We chose Neverlang due to its compatibility with the
flexibility, extensibility and modularity requirements of variant-
oriented programming. The implementation consists of approxi-
mately 13,000 LoC (approximately 370,000 NoC) of Java code
and approximately 2, 000 LoC (approximately 60, 000 NoC) of
Neverlang code including Typelang code.
To assess our approach, we address the following research
questions:
RQ; To what degree is it possible to streamline by associating
variants to language artifacts?
RQ, To what degree is it possible to automate the generation of
LSP clients, lowering € to 1?
RQ; Can the language server be automatically generated start-
ing from the Typelang variants lowering L to N'?

These questions assess our system’s modularity and reuse
at the artifact level (RQ;), the degree of automation in LSP plu-
gin generation (RQ;), and the feasibility of deriving language
servers directly from Typelang variants (RQ;). Our case study
proceeds as follows: we first implement a type system for several
Neverlang artifacts using Typelang; then, we assemble these arti-

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

0 Java

min

[Typelang

g 22
E 2 18
e} W s 16 12 12
< 1 1 1 3
J gy AR E
\\\ N D $ F ¥ > > ¥
,‘,\“ \ o 9 \\(/ ({)\ 6\\ &\\ &\\ a\\\ o\o \\\\\ \\\\\ Q\k
B T R
>* v S JEMEON:

(a) A visualization of the LoC reduction achieved by implementing a type system using
Typelang for some Neverlang artifact compared to a traditional Java-based approach.
This figure illustrates how the use of Typelang leads to significant simplification, with
a reduction of approximately 89.06%.

) S Typelang [T Java

2106 919

57 1767

1047 1062
819

494 401
2[]() 147 19

c
&

(b) A visualization of the NoC reduction achieved by implementing a type system
using Typelang for some Neverlang artifact compared to a traditional Java-based
approach. This figure illustrates how the use of Typelang leads to significant simplifi-
cation, with a reduction of approximately 93.48%.

Figure 7: A comparison of the LoC and NoC needed to implement a type system using Typelang compared to a traditional Java-based approach.

Abstract Term Neverlang Term
Language Artifact Module
Feature Box Annotated Java class
Collector Annotation preprocessor

Type checking/inference semantics ~ Type checking/inference role

Table 3: Mapping the defined abstract terms to their counterparts in Neverlang.

facts into two complete language variants—SimpleLanguage,'”
a general-purpose language from the Graal VM project [142],'8
and Neverlang itself—and generate their language servers and
LSP plugins for Visual Studio Code, NeoVim, and Vim. We
quantify the effort in terms of lines of code (LoC) and number
of characters (NoC), offering objective metrics for comparison
against prior work [25]. The full source code and case study
implementation are publicly available on Zenodo.!® The follow-
ing subsections describe the experimental setup, present results
for each metric, and answer RQ;, RQ,, and RQ; based on our

empirical findings.

6.1. Tool Support

To have a clear correspondence between the generic terms
used previously and the specific Neverlang terms for those con-
cepts, we provide a mapping in Table 3.

Our Typelang implementation leverages Neverlang and inte-
grates with its parser [30] to use its polyglot capabilities [132].
Prior to the introduction of Typelang in Neverlang, developers
had to write significant amounts of Java code to implement cus-
tom type checking and type inference rules, with limited reuse
for existing type system specifications. For instance, Listing 7
demonstrates how the Typelang DSL can define type system
rules for the stmt.AssignmentStatement module in Neverlang.
In this example, the assignment is treated as a new declaration
and will be statically and strongly typed.

Neverlang Integration. We extended the Neverlang com-
piler with an annotation preprocessor capable of handling the
Typelang DSL. Neverlang modules can include semantic ac-
tions annotated with the <typelang> label; any code within

17https://github.com/graalvm/simplelanguage
18http://openjdk.java.net/projects/graal
9https://doi.org/10.5281/zenodo. 15276991

18

1 module stmt.AssignStatement {

2 imports { }

4 reference syntax {

5 AssignStatement <— Identifier "=" Expression ";"
6 }

8 role(execution) { }

10 role(check-infer) {

11 0 <typelang> @{

12 try {

13 infer identifier $1.token with [$2.type] = $1.type
14 check $1.token : $1.type is invariant $2.type
15 use $1.token as $1.type

16 } on InferenceException {

17 define $2 $1

18 }

19 Do

20 }

21}

Listing 7: An example of Typelang DSL to perform type checking and type
inferencing for an assignment statement in the Neverlang language workbench.

these semantic actions will be written according to the syntax
of a Typelang variant. When the Neverlang parser encounters
the <typelang> annotation in a module, the Neverlang annota-
tion preprocessor gathers all annotated Java classes to generate
the Typelang variant needed to compile that specific Neverlang
module. Neverlang delegates the parsing of the code of these se-
mantic actions to the Typelang parser. If any features remain un-
recognized after the collection phase, Neverlang will fail during
parsing. Furthermore, Neverlang uses dependency injection (via
the Google Guice Library [136]) to distribute the annotated Java
class to internal structures. Through this injection, Neverlang en-
sures that all languages containing the stmt.AssignStatement
module will also inherit its type checking and type inferencing
capabilities.

Assignment Statement Example. Listing 7 shows the
role check-infer (line 10) which uses its own Typelang vari-
ant. This variant is deduced from the feature boxes being
used—specifically, identifier and InferenceException in
this case. The check-infer role assumes the existence of a
variant v; from the Typelang family P capable of compiling the
stmt.AssignStatement module; if such a variant exists, it will
be used for type checking and type inferencing; otherwise the
module cannot be compiled. The check-infer role uses the

https://doi.org/10.1016/j.jss.2025.112554
https://github.com/graalvm/simplelanguage
http://openjdk.java.net/projects/graal
https://doi.org/10.5281/zenodo.15276991

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

keyword try to infer the type of the right-hand side expression
(line 13) and checks that the types of the left-hand side and
right-hand side are compatible (line 14). Line 15 declares the
effective usage of the left-hand side identifier with the inferred
type. If an InferenceException is raised during these phases,
it indicates that the type associated with the identifier cannot
be inferred. Consequently, line 17 is executed to define a new
identifier whose type corresponds to the type of the right-hand
side expression. This approach assumes that each time an Infer-
enceException occurs, a new variable declaration rather than
the re-assignment of an existing one is performed. While this
may not always be true depending of the language (the exception
could arise for several reasons, for instance, because the type of
the right-hand side expression is not visible in the current scope,
or the type of the right-hand side expression is not compatible
with the type of the left-hand side identifier previously declared),
but it can be readily covered. It is reasonable to assume that
the stmt.AssignStatement module will be used in conjunction
with another Neverlang module defining a declared scope and a
priority level, as shown in Fig. 4.

Typing Environment. Each typing environment is associ-
ated to a scope defined by a Neverlang module. The typing en-
vironment admits the stmt.AssignStatement module will con-
tain unordered pairs of the form (ID, TableEntry) for all iden-
tifiers declared within its scope, as shown by the blue boxes in
Fig. 5. Given the variety of type inference strategies available—
including, Hindley-Milner [63, 101], constraint-based [111],
and unification-based [120] algorithms—Neverlang employs a
strategy pattern [54] to select the algorithm for the type infer-
ence phase. Furthermore, additional and custom type inference
strategies can be integrated later without modifying the existing
ones, ensuring the type system’s extensibility.

Reduction in LoC and NoC.
role in Java required 64 LoC and 2, 106 NoC (excluding whites-
pace, newline, and tab characters). The same role in Typelang
achieves a LoC reduction of approximately 89.06% (see Fig. 7a)
and a NoC reduction of approximately 93.48% (see Fig. 7b),
resulting in a total of 7 LoC and 141 NoC. The summary in
Fig. 7 demonstrates that the Typelang DSL effectively reduces
the amount of code needed to implement a type system for sev-
eral artifacts in Neverlang. We calculated the overall LoC and
NoC reduction percentages using the following formulas:

LOCj ava — LOClypelang

LoC = x 100
© LOCjava

NoC = NOCjava - NOCtypelang % 100
NOCjava

and the average per-artifact LoC and NoC percent reduction
using the following formulas:

2 i1 LoG;

n

LoC =

NoC = 2izi NoGi

n
The results of our analysis are:

— overall and average LoC reduction percentage are approx-
imately 82.90% and 82.32%, respectively;

Implementing the check-infer

19

bundle commons.expressions.Expressions {
slices

1

2

3

4 commons. types.IntegerType
5 commons . types.DoubleType
7

8

9

UnaryNotSlice
UnaryPlusSlice
unary.UnaryMinusSlice
unary.UnaryComplementSlice
unary.UnaryOperand
unary.ParenthesizedExpression

commons
commons
commons
commons
commons
commons

.expressions.
.expressions.
.expressions.
.expressions.
.expressions.
.expressions.

unary.
unary.

.add.AdditionSlice
add.AdditionOperandSlice

commons
commons

.expressions
.expressions.

commons
commons

.mul.MultiplicationSlice
.mul.MultiplicationOperandSlice

.expressions
.expressions

Listing 8: A Neverlang bundle to define the Expressions module.

— overall and average NoC reduction percentage are approx-
imately 93.87% and 93.18%, respectively.

6.2. Degree of Type System Reuse

Overview. In recent decades, reuse has gained recogni-
tion as a key factor in software development, encompassing
both software engineering [95, 57, 6, 21] and programming lan-
guage design [96, 8, 67, 13]. This work aims to reduce the
code needed to implement a programming language type system.
This section discusses the extent of type system reuse within
Neverlang and how Typelang facilitates it. The Typelang DSL
empowers language developers to define type systems modu-
larly, thereby enabling the reuse of these type systems across
various languages.

To illustrate the degree of reuse of type systems in Never-
lang, an example of a Neverlang bundle is needed. A bundle—
shown in Fig. 8—is a Neverlang construct that contains a set
of slices intended for inclusion within a language construct.
In this example, the Expressions bundle defines the type sys-
tem for expressions in Neverlang, specifically for additive and
multiplicative expressions over integer and double types. A
Neverlang language can import multiple bundles, enabling the
reuse of type systems across different languages.

To demonstrate the extent of type system reuse in Neverlang,
we implemented a set of feature boxes (see Fig. 8a) for:

— the most common primitive types, and

— the most common operators defined on these types.
Furthermore, we implemented a set of semantic actions for the
Typelang roles in Neverlang for the Expressions (see Fig. 8b).

Metrics for the Degree of Reuse. This section aims to
quantify the number of expression languages in which a type
system can be reused. We define the following sets:

— U, aset of N primitive types,
— 0, a set of M operators defined on these primitive types.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

An expression language is defined by two subsets: # C U and
0 C Oy, where Oy = {o € O | types(o) C u}.?° Operators are
dependent on types; an operator can only be included if it is
defined on the types present in the expression language. Our
strategy to count the number of expression languages involves
counting the combinations of primitive types and the operators
that can be defined on them. There are 2" possible combinations
of primitive types. For each combination of primitive types, we
can include only the operators defined on those types. Thus, for
each u C U we can construct 2/%! combinations of operators,
where |O,| is the number of operators defined on the types in u.
The total number of expression languages L is given by:

L= > (2%-1)

uCUlu#0

where —1 is used to exclude the empty set of operators. That is,
languages with no operators are not considered valid expression
languages.

Consider a concrete example where U = {int, double} and
O = {+, *} in which:

® 1 int X int — int,
% . double X double — double.

+ :int X int — int,
+ : doublexdouble — double,

The possible combinations of primitive types and operators are:

u = {int, double}, o = {+, *} = {int, double}, o = {*}
u = {int}, o = {+, %}

u = {double}, o = {+, =}
u = {int,double}, o = {+}
u = {int}, o = {+}

u = {double}, 0 = {+}

double}, o = {x}
int, double}, o = 0

{
{
{
{
{
{double}, 0 =0

The total number of expression languages (£) is calculated by:

L - <2|O(i/11,t[(714[710]| — 1) + (zlo(inl}| — 1) + (2|0(r1(mblﬂ)| — 1)
(21— 1) 4 (20— 1) 4 (20 -)

(22-1)+(2°-1)+ (2>-1)
9

]
-1

We introduce two metrics to evaluate the degree of type system
reuse in Neverlang, drawing inspiration from the software reuse
literature [83, 53, 10]: the normalized absolute reuse degree and
the operator conditional reuse degree.

Normalized absolute reuse degree (NAR). It measures
how many times a type system component is reused across the
expression language implementation. It is defined as:

{leL|cell

NAR(c) = ra

where c is a component (a type or an operator) of the type system,
and L is the set of all expression languages.

Operator conditional reuse degree (OCR). It estimates the
reuse of an operator within the expression languages that include

20The types of an operator are the types on which the operator is defined.

20

a specific primitive type. It is defined as:

fleL|telnoell
{leL|telL}|

OCR(o|t) =

where ¢ is a primitive type, o is an operator defined on it, and L
is the set of all expression languages.

Concrete Example. Consider the set of expression language
L ={l, 1,3} where:

- Ly = {int, +},

— L, = {bool, int, +, *, ==},

— L3 = {double, +, +}.
The NAR for each operator is calculated as:

Hh, b, Y 3
— NAR(+) = ———— = - =11,
" l l3 2 3
— NAR(x) = It 2’3 M _ 3~ 067, and
b} 1
— NAR == :7_73033
(3 3
On the other hand, the OCR for each operator is calculated as:
. {h, b}l 2
— OCR(+,int) = ———— == =1,
i
— OCR(x,inf) = —2= = ~ =0.5, and
Hll:l% | 2 |
— OCR(==, int) = el _ 1 _

{1, 2}

The LoC and NoC saved for the feature boxes and the seman-
tic actions implementing the Typelang roles for each / € L can
be trivially calculated by summing respective values reported in
Fig. 8a and Fig. 8b.

The NAR and OCR metrics provide a quantitative assess-
ment of type system reuse. While NAR reflects the absolute
reuse of a component across expression languages, OCR cap-
tures conditional reuse based on the presence of a given primitive
type. Importantly, these metrics are not limited to primitive op-
erators of the expression languages—they can be generalized
to any programming language component defined in a modular
way. That is, the NAR and OCR metrics offer a general method
for evaluating type system reuse across modular language imple-
mentations. By using this approach, we also demonstrate that the
number of combinations is reduced from 7~ x 1 to A x 1, where
T = L represents the number of type systems and N << T.

6.3. Language Server Generation

We developed a set of default feature boxes for Neverlang,
implemented as annotated Java classes. These classes are de-
signed to be used within the Typelang-related semantic actions
to perform type checking and type inference. In particular, we
provide:

— approximately 20 annotated Java classes for types;

— approximately 20 annotated Java classes for signatures;

— approximately 10 annotated Java classes for scopes;

— approximately 5 annotated Java classes for exceptions.

For each component described in Sect. 5.1 we provide a cor-
responding set of default implementations that conform to the
respective interfaces. The orchestration and communication

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Feature Boxes
= Lines of Code (LoC)
- Number of Characters (NoC)
sting m 20
Long 3 20
nteger 72 20
float 7 20
Double 2 20
Char 717 20
Boolean 7 20
UnaryPiustong{ 839 2
orypusme] 817 2
Unarypusrioat{ 825 =
Unarypiuspoutle | 847, 2
UnaryPlusChar 821 23
UnaryNotsoolean{ 849 =
UnaryMinustong | 823 2
UnaryMinusint 4 819, 23
Unaryinustioat | 827 2
UnaryMinuspoubie{ 831 2
UnaryMinusChar 823 23
sutong | 877 2
Sublnt 872 26
subfioat{ 802 2
subDouble | 887 2
Neastring | 893 2
Neatong | 885 2
Neant| 81 2
Nearioat | 889 2
Neabouble | 893 2
Neachar | 885 2
NeqBool { 894 26
Leqtong | 888 2
lean | 8 2
LtegFloat { 892 26
Lieapoubie | 896 2
Leachor | 888 2
Ltlong 881 26
Lne] 877 26 Typelang Semantics
B Lines of Code (LoC)
Lrioat{ 885 2 - Number of Charactrs (NoC)
Loouble | 89 2 . 199 .
Lcnar] ss1 2 rono 0 .
Geqtong | 88| 26 Integer 214 s
Gtegint{ 884 26 Float 215 6
Greatioat | 892 26 Double 210 .
GteqDouble { 896 26 Char- 217 6
GteqChar{ 888 26 Boolean { 420 10
P 2 Unaryplus 135 B
o] e 2 Unaryht m .
cront] sms 2 Unaryinus 139 .
102 .
GtDouble { 889 26 NotOperator
SubtractionOperator 115 6
GtChar- 881 26
Subtracton 163 .
castang{ 890 2
Notgquaityoperator 105 .
tatong | 882 2
NotEqualty 207 B
o 2
Ealnt o LessEqualOperator 101 6
EqFloat| 886 26 LessEqual 201 6
EqDouble | 890 26 LessOperator 101 6
cachar{ 882 2 Less 201 B
cagool | 891 2 GreaterEqualoperator 107 .
Mitong {877 2 Greatercaua{ 210 .
wane| 872 26 Greateroperator 107 .
MulFloat { 882 26 Greater 210 L
woune] 887 2 cqualityoperator 105 .
207
Divlong{ 877 26 Equality ¢
Matipicat 121 .
Divint 872 26 lultiplicationOperator
Matipication { s .
oiioat | 882 2
Owisionoperator o .
owooupie | 887 2
Diision 151 .
orgooi{ 884 2
oroperator o7 .
AndBool { 887 26 or 127 6
Addsting | 887 2 Andoperator 9 6
Agdtong{ 877 2 - - .
Addint 872 26 AdditionOperator 109 6
haoroat| 882 2 Adtion 11 .
nddoouble| 887 2
B o n
Count
ED o %
Count
(b) A visualization of the LoC and NoC needed to implement the semantic actions
(a) A visualization of the LoC and NoC needed to implement the feature boxes for for the Typelang roles in Neverlang. The Typelang roles are used to define the type
the Java primitive types and the operators defined on them. system for the expressions in Neverlang.

Figure 8: A comparison of the LoC and NoC needed to implement a type system using Typelang compared to a traditional Java-based approach.

21

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

1 public class SimpleLangWorkspaceHandler

2 extends WorkspaceHandler {

4 public SimpleLangWorkspaceHandler(Workspace workspace) {
5 super (

6 workspace,

7 new DefaultIncrementalCompilationHelper());

8 }

10
11
12
13}
15
16
17 }

public SourceSet getSourceSet(Path rootDir) {
return new DefaultSourceSet.Builder()
.buildFromRootDir(rootDir);

public Language language() {
return new SimpleLang(new SimpleLangModule());

19
20
21
22 }

public Stream<Role> lspRoles() {
return Stream.of(new LayeredRole(List.of(
new Role(, Role.Flags.MANUAL))));

24
25
26
27 }

public Class<? extends AbstractCompilationHelper<?, 7>>
compilationHelper() {
return CompilationHelper.class;

29
30
31
32
33 }

35}

public List<Priority> priorities() {
return List.of(new Sources(),
new File(),
new Function());

Listing 9: The workspace handler implementation for SimpleLanguage.

among these components are handled by the Neverlang runtime,
relieving the language developer from the burden of implement-
ing additional coordination logic. For the sake of completeness,
the components for which we provide default implementations
include:

— Compilation Unit, — Table Entry,
— Compilation Unit Task, — Fenwick Tree,
— Compilation Unit Ex- — LSP Graph,
ecutor, — Compilation Helper.

Language developers can choose to either adopt the provided
default implementations or define custom ones from scratch to
suit specific needs. This design allows language developers to
obtain a fully functional language server out of the box, while
still maintaining the flexibility to tailor it to their language’s
requirements. The only exception is the workspace handler,
for which Neverlang does not provide a default implementation.
This is because the workspace handler handles pieces of infor-
mation that are strictly related to the implemented language and
cannot be predetermined. Instead, Neverlang provides an ab-
stract class that developers can extend to implement the required
behavior. Listing 9 shows an example workspace handler im-
plementation for SimpleLanguage. An implementation for the
workspace handler abstraction involves defining the methods:

— getSourceSet (line 10) returns the source set of the lan-
guage based on the given file extension; that is, the collec-
tion of files that must be processed by the LSP;

— language (line 15) returns an instance of the language;

22

— 1spRoles (line 19) returns a stream of roles associated to
the LSP; i.e., the names of all parse tree visitors needed to
populate the LSP-related data structures;

— compilationHelper (line 24) returns the class of the con-
crete implementation of the compilation helper;

— priorities (line 29) returns a list of priorities for the
compilation units, sorted according to the desired visit
sequence.

Notice how the workspace handler connects all components and
embodies the exogenous approach to dependencies management.
For instance, by specifying priorities within the workspace han-
dler, each priority definition remains unaware of the others, as
well as of their relative order. Aside from the Neverlang code
that defines the language—optionally leveraging the reusable
default implementations—the workspace handler is the only
component that must be implemented by the developer to obtain
a fully functional language server for a given language, such as
SimpleLanguage in this case.

6.4. LSP Client Generation

The LSP is completed by the LSP client generator. This gen-
erator is based on a system of template generators responsible
for generating syntax highlighting rules and LSP configuration
files for supported editors. To demonstrate the flexibility and
simplicity of our approach, we implemented the aforementioned
Gradle plugin, which currently supports Vim, NeoVim and VS-
Code. Support for additional editors can easily be added in the
future. Each plugin has been used to generate the corresponding
LSP plugin for both SimpleLanguage and Neverlang. Fig. 9
shows the LoC and the NoC needed to implement the template
generators for the three editors. The implementation is relatively
straightforward: template strings contain placeholders that are
filled with values specific to the implemented language. Each
placeholder follows the format ${placeholder}. Figs. 9a, 9b
and 9c report the LoC and NoC for the VSCode, NeoVim, and
Vim plugins respectively, grouped by the following categories:

— implemented template generator, the Java code, integrated
with the Gradle plugin, that implements the template gen-
erator;

— template for syntax highlighting, the annotated template
defining syntax highlighting;

— template for LSP plugin, the annotated template for the
LSP plugin;

— glue files, additional files required only for full support in
VSCode.

Each template needs to be annotated only once per editor. After
that, the Gradle plugin uses language-specific input to popu-
late the placeholders and generate a concrete plugin for any
supported language.

Note that in our analysis, the NoC excludes whitespace, new-
line and tab characters. According to Fig. 9a, the implemented
template generator for VSCode has been implemented in 160
LoC and 5, 540 NoC. For Vim (Fig. 9c) and NeoVim (Fig. 9b),
the template generators have been implemented in 110 LoC and
3,364 NoC. Vim and NeoVim share the same file format for
syntax highlighting, we could reuse the same code for both (see

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

Q& 1160 LoC NoC
\m\\\‘““ xe
o \‘C“‘\i :\ o

e

5540

i 19

e
e

e

we

1383

140
o, \3\\’
v\‘\\\\\\w\,‘. .

N ey

[30

e ™ 10038

(a) LoCs and NoCs required to implement the template generators for VSCode.
The VSCode generator leverages the existence of annotated templates for syntax
highlighting and LSP plugin. Additional glue files specific to VSCode are needed to
complete the support.

110 LoC

NoC

ol

EAONS

Ao \oke)

AV e o 3364
Qc\\““\

626

o SO
Xc\\\\‘\"\“ S

N e 408

(b) LoCs and NoCs required to implement the template generators for NeoVim.
The NeoVim generator leverages the existence of annotated templates for syntax
highlighting and LSP plugin.

o 110

-

A e

W o 3367
e

626

314

0 LoC NoC

(c) LoCs and NoCs required to implement the template generators for Vim. The Vim
generator leverages the existence of annotated templates for syntax highlighting and
LSP plugin.

Figure 9: Comparative analysis of LoCs and NoCs required to implement the
template generators for VSCode, NeoVim and Vim. The figure highlights the
differences in implementation complexity, demonstrating the flexibility and
adaptability of the Gradle plugin in supporting multi editor ecosystems.

Fig. 9b and Fig. 9c). Moreover, NeoVim has built-in support for
the LSP protocol, whereas Vim needs an external plugin. We
chose to adopt CoC (Conquer of Completion), one of the most
widely used LSP clients for Vim. However, similar template
generators could be created for other Vim plugins with minimal
effort. In our implementation, using CoC required slightly less
code (20 LoC) than supporting the native NeoVim client (23
LoC). According to Biinder and Kuchen [25], the development
effort for VSCode support is significant (around 725 minutes),
as is the effort for implementing the language server (around
350 minutes). These figures are consistent with our findings: the
amount of code required for the VSCode client is noticeably
higher compared to the other editors. Specifically, the remplate
for syntax highlighting consists of 119 LoC and 1,383 NoC,
while the template for LSP plugin comprises 140 LoC and 2,700
NoC.

23

6.5. Discussion

This section presents the results of the case study and ad-
dresses the research questions introduced in Sect. 1. We then
discuss the limitations of our approach and its applicability to
other language workbenches. Finally, we explore the implica-
tions of our approach for the future of the LSP.

6.5.1. Research Questions

In this study, we presented a demonstration case study to
showcase the effectiveness of our approach. We addressed the
three research questions introduced in Sect. 1, providing a de-
tailed answer to each.

RQ; To what degree is it possible to streamline by associating
variants to language artifacts?

We demonstrated that by associating Typelang variants with
language artifacts, it is possible to define type checking and type
inference semantics in a modular way. The variant-oriented
programming paradigm, along with the cross-artifact coordi-
nation layer, played a key role in enabling different variants to
coexist and span across multiple language artifacts. This re-
sults in a flexible and modular type system. The benefits of this
modularization are reflected in our results: the amount of code
required to implement a type system was reduced by approxi-
mately 82.90% in terms of LoC and 93.87% in terms of NoC.
On a per-artifact basis, the average reduction was approximately
82.32% for LoC and 93.18% for NoC. Moreover, the developed
artifacts are reusable across different languages, which further
reduces the overall development effort.

RQ; To what degree is it possible to automate the generation
of LSP clients, lowering € to 1?

LSP clients for different editors can be generated using the
Gradle plugin introduced in Sect. 5.4. This plugin is responsible
for generating both syntax highlighting and LSP configuration
files for the supported editors. The amount of code needed to
implement the template generators varies across editors: the
VSCode generator needs 160 LoC and 5, 540 NoC, while the
NeoVim and Vim generators need 110 LoC and 3,364 NoC.
The higher code requirements for the VSCode generator stem
from the need for additional glue files to achieve full language
support. In contrast, NeoVim provides native support for the LSP
protocol, and Vim generators need less code because NeoVim
offers a native support for the LSP protocol, meanwhile Vim
relies on an external plugin. Since NeoVim uses the same syntax
highlighting format as Vim, the same code can be reused for
both. Each template needs to be annotated only once per editor,
after which the plugin can be reused to generate LSP clients for
all supported editors and for any language. As a result, the effort
required to support multiple editors is effectively reduced from
£ to 1, thanks to the automation provided by the plugin.

RQ; Can the language server be automatically generated start-
ing from the Typelang variants lowering L to N'?

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

/ll\ vim

1macs

=

(a) Reduction to 7~ x 1 where T~ is the number of type systems implemented and
holds 7~ = L. It is achieved by the generation of the language server leveraging the
Typelang definitions and the editing support.

LSP
or
DAP

9[Client Generator]

S m———

N x 1 where N << T

Nvim
—

LSP
or

DAP

Fmacy

)

Code

1
1
1
1
1
1
1
1
1
1
1
1
1
1
—| Client Generator [}
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(b) Reduction to N x 1 where N' << T and N is the number of type systems
without overlaps. It is achieved by reusing the artifacts across multiple languages.

Figure 10: A graphical representation of the 7~ x 1 and A" x 1 reduction using the client generator.

In Sect. 5.1 and Sect. 5.3, we highlighted the possibility of
generating the language server implementation by leveraging
the data structures provided by the language workbench. We
also demonstrated that the properties of variant-oriented pro-
gramming and cross-artifact modularization layer have been
crucial in ensuring that these data structures can be accessed
across different variants. By implementing the language servers
according to the proposed methodology, we effectively reduced
the number of language server implementations from £ to N
where N/ << L. The first reduction—from £ x 1to T x 1,
as shown in Fig. 10a—is achieved by generating the language
server from Typelang definitions. Even though £ = 7T, this
results in a significant reduction in development time and effort,
as defining the type system in Typelang is substantially simpler
than implementing a full language server. This is supported
by our case study and the answer to RQ;. To the best of our
knowledge, the best reduction in the literature so far is 7 X &,
as achieved by Xtext. However, Xtext enforces a monolithic
implementation of languages and does not support automated
generation of LSP client plugins, making it impossible to reduce
£ and, consequently, offering no gains on the client side. Client
implementation is often overlooked in LSP development, yet it
can represent a significant portion of the effort, as shown by Biin-
der and Kuchen [25]. Our proposal not only improves upon the
current state of the art by reducing the cost to 7~ x 1, but it also
achieves a further reduction to N x1, where N << T~ represents
the number of distinct, non-overlapping type systems. This is
made possible through artifact reuse across multiple languages,
as illustrated in Fig. 10b.

6.5.2. Limitations

In this section, we discuss the limitations of our approach
to generating LSP clients and language servers. Specifically,
we address the limitations concerning: i) the proposed data
structures (i.e., the Fenwick Tree and the LSP Graph), and ii) the
Gradle plugin.

The Fenwick tree and the LSP graph are data structures
introduced in the context of LSP. While the former is a well-

24

established data structure, it is not commonly used in LSP scenar-
ios and could be replaced with alternatives such as the segment
tree [12]. The segment tree is less efficient in terms of memory
usage—O(2n) instead of O(n)—and has slightly higher time
complexity—log n + k instead of log n, where # is the number of
elements and k the number of retrieved segments. However, un-
like the Fenwick tree, which supports only prefix sums or point
updates, the segment tree can support any associative function
(e.g., sum, min, max, gcd) and enables efficient range updates via
lazy propagation.

The LSP graph is a novel data structure introduced specif-
ically for the LSP domain. To the best of our knowledge, no
alternative data structure currently exists that serves the same
purpose. However, our implementation does not yet support
code completion—a feature that can be trivially derived from
the LSP Graph. For example, the neighbors of a node in the
graph can serve as valid completion suggestions. We chose not
to implement this feature in our case study, as it was not strictly
necessary for demonstration purposes; nonetheless, it is a clear
direction for future work.

Typelang is a domain-specific language designed to define
type systems within the LSP context. It is not a general-purpose
language and is not intended for use outside the domain of type
system definition. However, as a family of DSLs, a full imple-
mentation of Typelang could be used to define type systems
for a wide range of programming languages. By leveraging the
variant-oriented programming paradigm and the cross-artifact
coordination layer, developers can reuse type system compo-
nents across multiple languages.

The Gradle plugin is a specialized tool designed for LSP-
related tasks. Although it is not intended as a general-purpose
Gradle plugin, it can be used to generate LSP clients for various
programming languages, as demonstrated in our case study. At
present, it supports a limited number of editors, but it is easily
extensible to support additional ones.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

6.5.3. Applicability

The applicability of our approach extends beyond the Nev-
erlang language workbench. It is suitable for any language
workbench that supports the modularization of linguistic com-
ponents. As shown in Table 1, other popular language work-
benches—such as Melange, MPS, and Spoofax—also support
this feature. Therefore, our approach can be applied to these
language workbenches as well.

Both the variant-oriented programming paradigm and the
cross-artifact coordination layer are generic mechanisms, ap-
plicable to any programming language. From one perspective,
Typelang is a DSL designed to demonstrate the effectiveness of
these paradigms; from another, it is a DSL for implementing type
systems. Any DSL that supports the modularization of linguistic
components could replace Typelang without compromising the
benefits provided by our approach.

The same holds true for the Gradle plugin. While origi-
nally developed for Neverlang, its applicability is not restricted
to language workbenches with modular linguistic components.
Instead, it can be used with any language workbench that sup-
ports generating a compiler or interpreter targeting the JVM.
Extending the plugin to support non-JVM-based languages is
part of our planned future work. In conclusion, our approach is
not confined to Neverlang: it generalizes to any language work-
bench with support for linguistic modularization and JVM-based
compilation or interpretation.

6.5.4. Implications

The progressive reduction from £x& to T x1, and ultimately
to A x 1, carries significant implications for the future of the
LSP. By minimizing the number of required language servers
and clients, our approach simplifies the development process and
reduces the inherent complexity of LSP implementations. This
simplification translates into faster development cycles, lower
maintenance overhead, and improved runtime performance for
both servers and clients.

Moreover, this reduction facilitates greater modularity and
reusability of components across tools and languages. Devel-
opers can focus on implementing language-specific logic once,
rather than repeatedly adapting it to fit a matrix of editors and
environments. This not only lowers the barrier to entry for sup-
porting new languages but also enhances the consistency and
reliability of the user experience across tools.

From an ecosystem perspective, our model supports a more
sustainable and scalable architecture. As the number of pro-
gramming languages and development tools continues to grow,
a leaner interaction model helps prevent the combinatorial ex-
plosion in LSP implementations. It also paves the way for richer
interoperability and tool composition, potentially enabling new
workflows and integrations that were previously too costly or
complex to implement.

We believe that this streamlined architecture has the poten-
tial to make LSP more approachable, practical, and powerful for
developers. In the long term, it may pave the way for a more
unified and efficient tooling landscape across programming lan-
guages and environments.

25

7. Related Work

Programming Paradigms. Programming paradigms have
long been an established topic of research in the software engi-
neering community [118, 29, 68, 89, 66]. Many paradigms [113,
76] are specifically designed to address core software develop-
ment concerns such as modularity, reusability, and maintain-
ability. In feature-oriented programming [4, 41, 114], a feature
module is a unit of composition that encapsulates specific func-
tionality. It is treated as a first-class entity and can be composed
with other feature modules to build complete software systems.
Feature-oriented programming is typically employed in the de-
velopment of software product lines and for the incremental
development of programs. Similarly, delta-oriented program-
ming [127, 42, 80] focuses on the dynamic and incremental
application of changes (called deltas) to a core module. Both
paradigms share conceptual similarities with our approach in
that they aim to modularize software systems into units that en-
capsulate distinct functionality. However, our approach required
the ability to explicitly define and compose variants within a
complex software system. This need is not fully addressed by
either feature-oriented or delta-oriented paradigms, as they are
primarily concerned with the incremental evolution of programs
or the modification of a central core module. In contrast, our
variants are not necessarily incremental nor must they relate to a
single core; moreover, the overall system may or may not form
a product line.

A related paradigm is aspect-oriented programming [75, 90],
which introduces aspect modules to encapsulate crosscutting
concerns—those that affect multiple parts of a system. Aspects
define pointcuts and advices, where pointcuts identify join points
in the execution of a program and advices specify the behavior
to execute at those points. While the similarities to our approach
are subtle, our notion of shared contexts can be considered
analogous to join points: they define the interaction boundaries
where variants can communicate and coordinate.

Variability in Language Variants. de Lara et al. [92] em-
ploy graph transformation techniques to model and compose
language variants. While their approach excels at visualizing and
managing interdependencies among language components, it
does not directly address the automation of type system integra-
tion or the generation of LSPs. In contrast, Typelang leverages
a variant-oriented programming paradigm and a cross-artifact
coordination layer to modularize type system definitions. These
definitions are then automatically integrated into the language
server generation process, thereby significantly reducing man-
ual effort across different editors. de Lara and Guerra [91]
adopt multi-level modeling to capture variability within lan-
guage families, facilitating the systematic reuse of language
artifacts. While their framework provides robust support for
language evolution and family engineering, it is primarily fo-
cused on high-level models and lacks dedicated mechanisms
for modularizing type system components or automating LSP
plugin generation. Typelang addresses this gap by providing a
family of DSLs that not only encapsulate type definitions and
checking rules in a modular fashion but also directly support

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

the generation of editor integrations across multiple language
artifacts.

FunKons [104], developed within the K framework, proposes
a component-based approach to achieve modularity in seman-
tics. Its main strength lies in composing semantic rules from
independent components to ensure reusability at the semantic
level. While Typelang shares the goal of modularity, it extends
the focus to type systems, offering integrated support for type
inference, type checking, and error reporting within a modular
architecture that also facilitates LSP generation. Mosses [102]
promote a modular formulation of operational semantics using
structured rules. Though this work significantly advances the
treatment of semantic variability, its scope remains confined to
operational semantics. In contrast, Typelang captures semantic
variability within its DSLs dedicated to type system definitions,
addressing not only the correctness of language behavior but
also the practical integration of type systems into development
environments.

Multi Product Lines. In the context of software product
lines [37, 112, 84], the multi-product line methodology [123,
124, 125] refers to a special case in which multiple product
lines are integrated into a unified product line. Our approach
aims to operationalize this concept by offering a programming
paradigm that enables the specification and composition of mul-
tiple variants within a complex software system, which may
itself be a product line. Several methodological approaches
have been proposed to support the development of multi-product
lines. Notably, in 2011, El-Sharkawy et al. [48] introduced a
methodology to support the heterogeneous composition of multi-
product lines. Similarly, Hartmann and Trew [60] proposed the
Context Variability Model, a technique designed to constrain
feature models, thereby enabling multi-product line support and
facilitating staged configuration within software supply chains.

Language Workbenches and IDEs. The development of
DSLs has become a prominent area of research, attracting consid-
erable attention from the software engineering community [98,
79]. Several language workbenches—such as Spoofax [139],
MPS [138], MontiCore [82], and Melange [45]—have been
proposed to facilitate the creation of DSLs. These platforms
typically support the generation of IDE features; however, such
support is often generic and fails to leverage the specific char-
acteristics of individual DSLs. Most rely on static templates
that overlook the modularity of DSL features, making it chal-
lenging to specify and reuse IDE services in a composable fash-
ion, as enabled by our approach. While MontiCore [26, 27]
and Melange [97] offer support for LPLs, their IDE support
is generally limited to basic features like syntax highlighting
and code completion. EMFText [62] also deserves mention
as an EMF-based tool [129]—similar to Xtext—that supports
modular language development and facilitates IDE generation.
Although EMFText does not explicitly address IDE variabil-
ity, it shares several foundational concepts with our LPL-driven
IDE approach, such as the use of attribute grammars to prop-
agate information between languages and their IDEs, and a
dedicated DSL for IDE description. Among available work-
benches, Xtext [24] remains, to the best of our knowledge, the

26

only tool that supports automatic generation of language servers
conforming to the LSP. However, Xtext is monolithic and does
not support modularity in the development of language syntax,
semantics, type systems, or language server implementations,
as summarized in Table 1. More recently, Mosses [103] has
proposed a formal, component-based methodology for building
language workbenches that emphasizes correctness and reuse.
While their framework systematically supports language devel-
opment, it does not address the modularization of type systems
or the generation of editor support. In contrast, Typelang is
designed to operate within a modular language workbench, offer-
ing reusable type system fragments and enabling the automated
generation of LSP clients for multiple editors. Langium [70],
a modern monolithic language engineering tool, also supports
LSP generation through a grammar-centric design. Although
it provides robust LSP integration, it does not natively support
modular type system definitions or the reuse of language com-
ponents. Typelang, in contrast, introduces a family of DSLs
designed specifically to modularize type systems and streamline
the generation of LSP plugins for various editors, thereby en-
hancing both flexibility and reusability in language engineering.

Languages for Type Systems. Bettini et al. [18, 20, 19]
introduced XSemantics, a DSL for specifying type systems and
operational semantics in XText. Their work demonstrates how
a language’s type system can enhance language server genera-
tion. While their focus is on improving language server gener-
ation through the type system, our approach extends this idea
by modularizing both the type system and the language server
implementation, providing greater flexibility and reusability.

Béguet and Amiard [11] employ satisfiability modulo theo-
ries (SMT) to express and verify type system properties. Their
approach uses logical DSLs to ensure type rules adhere to sound-
ness criteria, with the SMT solver validating these constraints.
In contrast, Typelang is designed to promote modularity, com-
posability, and reusability within a language workbench. In-
stead of focusing on automated reasoning about type correctness,
Typelang integrates type system definitions into the development
pipeline, automatically generating language server support and
streamlining editor integration. This approach is particularly
useful for environments where rapid reassembly and deployment
of language artifacts across multiple editors are required.

In “Type Systems as Macros,” Chang et al. [36] treat type sys-
tem definitions as syntactic extensions, allowing for automatic
expansion of type constructs during compilation. While macros
offer abstraction and reuse, their expansion is often closely tied
to compiler infrastructure, limiting portability across different
language workbenches or editors. Typelang, by contrast, is
built around modular type system implementation through DSLs.
This approach not only encapsulates type inference and checking
but also integrates them into variant-oriented programming, en-
abling seamless composition of language artifacts and automatic
generation of language server plugins.

Pacak et al. [109] focus on performance optimizations for
type checking, particularly through incremental computation.
Their method reduces recomputation by updating only the af-
fected portions of the type checker. While this is essential for

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

scaling type checking in large codebases and enhancing inter-
active development, it does not align directly with the goals
of Typelang. Typelang’s primary focus is on the reuse of type
system components and the automation of language server gen-
eration. The variant-oriented design in Typelang emphasizes
modularity and cross-artifact coordination, which could poten-
tially incorporate incremental techniques as an optimization,
though the core strength of Typelang lies in reusing type system
fragments across diverse language variants.

Language workbenches like Spoofax and MPS provide end-
to-end tooling for language development, including syntax def-
inition, semantic analysis, and editor integration. However,
they often suffer from monolithic type system implementations
that are tightly coupled to the host environment. For example,
MPS supports projectional editing and reusability at the syntax
level but lacks dedicated mechanisms for modularizing type
system definitions. Similarly, Spoofax, while powerful in trans-
formations, does not offer explicit constructs for composing and
reusing type checking rules. In contrast, Typelang addresses
these limitations by introducing a family of DSLs that modu-
larize type definitions, type inference, and type checking. Its
variant-oriented programming model separates concerns and pro-
motes the reuse of common type system components. Moreover,
its integration with automated LSP plugin generation signifi-
cantly reduces the development overhead of supporting multiple
editors.

8. Conclusion

In this paper, we introduced Typelang, a family of DSLs for
modular, composable, and reusable type system development.
Leveraging variant-oriented programming and a cross-artifact
modularization layer, Typelang enables the reuse of type sys-
tem variants across artifacts and supports automated generation
of language servers in modular workbenches. To reduce the
LSP plugin implementation effort from £ to 1, we developed a
Gradle plugin that automates plugin generation, reducing the
effort further to 7~ x 1 and then to A X 1, where N << T~
through artifact reuse. Our approach streamlines the creation of
type systems and LSP plugins for language families, improving
efficiency in modular language workbenches. Empirical results
show that our approach can reduce the effort required to imple-
ment type systems by 93.48% in terms of NoC and LSP plugins
by 100%.

Acknowledgments
This work was partly supported by the MUR project “T-
LADIES” (PRIN 2020TL3X8X).

References

[1] Aho, A.V,, Sethi, R., Ullman, J.D., 1986. Compilers: Prin-
ciples, Techniques, and Tools. Addison Wesley, Reading,
Massachusetts.

27

(2]

(5]

[10]

[11]

[12]

[13]

Ammann, U., 1978. Error Recovery in Recursive Descent
Parsers and Run-Time Storage Organization. Technical
Report D-INFK. ETH Ziirich, Department of Computer
Science. Ziirich, Switzerland.

Apel, S., Leich, T., Saake, G., 2008. Aspectual Feature
Modules. IEEE Transactions on Software Engineering
34, 162-180.

Apel, S., von Thein, A., Wendler, P., GroBlinger, A.,
Beyer, F.,, 2013. Strategies for Product-Line Verifica-
tion: Case Studies and Experiments, in: Chang, B.H.,
Pohl, K. (Eds.), Proceedings of the 35th International
Conference on Software Engineering (ICSE’13), IEEE,
San Francisco, CA, USA. pp. 482-491.

Barros, D., Peldszus, S., Assun¢do, W.K.G., Berger, T,
2022. Editing Support for Software Languages: Imple-
mentation Practices in Language Server Protocols, in:
Wimmer, M. (Ed.), Proceedings of the 25th International
Conference on Model Driven Engineering Langauges and
Systems (MoDELS’22), ACM, Montréal, Canada. pp.
232-243.

Bassett, P., 1996. Framing Software Reuse: Lessons from
the Real World. Prentice Hall.

Basten, B., van den Bos, J., Hills, M., Klint, P., Lankamp,
A., Lisser, B., van der Ploeg, A., van der Storm, T., Vinju,
J., 2015. Modular Language Implementation in Rascal—
Experience Report. Science of Computer Programming
114, 7-19.

Batory, D., Lofaso, B., Smaragdakis, Y., 1998. JTS: Tools
for Implementing Domain-Specific Languages, in: Pro-
ceedings of the 5th International Conference on Software
Reuse (ICSR’98), IEEE Computer Society, Victoria, BC,
Canada. pp. 143-153.

Batory, D., Sarvela, J.N., Rauschmayer, A., 2004. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering 30, 355-371.

Bay, T.G., Pauls, K., 2004. Reuse Frequency as Metric
for Component Assessment. Technical Report 464. ETH,
Department of Computer Science. Ziirich, Switzerland.

Béguet, R., Amiard, R., 2023. Application of SMT in
a Meta-Compiler: A Logic DSL for Specifying Type
Systems, in: Graham-Lengrand, S., Preiner, M. (Eds.),
Proceedings of the 21st International Workshop on Satisfi-
ability Modulo Theories (SMT’23), CEUR, Haifa, Israel.
pp. 46-61.

de Berg, M., Cheong, O., van Kreveld, M., Overmars,
M., 2008. Computational Geometry: Algorithms and
Applications. 3rd ed., Springer.

Bertolotti, F., Cazzola, W., Favalli, L., 2023a. On the
Granularity of Linguistic Reuse. Journal of Systems and
Software 202. doi:10.1016/j.jss.2023.111704.

https://doi.org/10.1016/j.jss.2025.112554
http://dx.doi.org/10.1016/j.jss.2023.111704

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

Bertolotti, F., Cazzola, W., Favalli, L., 2023b. SPJl9e:
Software Product Lines Extraction Driven by Language
Server Protocol. Journal of Systems and Software 205.
doi:10.1016/j.js5.2023.111809.

Bettini, L., 2011. A DSL for Writing Type Systems for
Xtext Languages, in: Probst, C.W., Wimmer, C. (Eds.),
Proceedings of the 9th International Conference on Prin-
ciples and Practice of Programming in Java (PPPJ’11),
ACM, Kongens Lyngby, Denmark. pp. 31-40.

Bettini, L., 2013a. Implementing Domain-Specific Lan-
guages with Xtext and Xtend. PACKT Publishing Ltd.

Bettini, L., 2013b. Implementing Java-like Languages in
Xtext with Xsemantics, in: Proceedings of the 28th An-
nual ACM Symposium on Applied Computing (SAC’13),
ACM, Coimbra, Portugal. pp. 1559-1564.

Bettini, L., 2016. Implementing Type Systems for the
IDE with Xsemantics. Journal of Logical and Algebraic
Methods in Programming 85, 655-680.

Bettini, L., 2019. Type Errors for the IDE with Xtext and
Xsemantics. Journal Open Computer Science 9, 52-79.

Bettini, L., von Pilgrim, J., Reiser, M.O., 2016. Imple-
menting a Typed Javascript and Its IDE: A CASE-Study
with Xsemantics. Journal on Advances in Software 9,
283-303.

Bezerra, C.I.M., Andrade, R.M.C., Monteiro, J.M., 2015.
Measures for Quality Evaluation of Feature Models, in:
Proceedings of the 9th International Conference on Soft-
ware and Software Reuse (ICSR’15), Springer, Miami,
FL, USA. pp. 282-297.

Booch, G., Maksimchuk, R., Engle, M., Young, B.,
Conallen, J., Houston, K., 2007. Object-Oriented Anal-
ysis and Design with Applications. Third ed., Addison-
Wesley.

Briand, L.C., Daly, J.W., Wiist, J., 1999. A Unified Frame-
work for Coupling Measurement in Object-Oriented Sys-
tems. IEEE Transactions on Software Engineering 25,
91-121.

Biinder, H., 2019. Decoupling Language and Editor:
The Impact of the Language Server Protocol on Tex-
tual Domain-Specific Languages, in: Hammoudi, S., Fer-
reira Pires, L., Seli¢, B. (Eds.), Proceedings of the 7th
International Conference on Model-Driven Engineering
and Software Development (MODELWARD’19), SciTe
Press, Prague, Czech Republic. pp. 129-140.

Biinder, H., Kuchen, H., 2019. Towards Multi-editor Sup-
port for Domain-Specific Languages Utilizing the Lan-
guage Server Protocol, in: Hammoudi, S., Pires, L.F,,
Seli¢, B. (Eds.), Proceedings of the 7th International
Conference on Model-Driven Engineering and Software
Development (MODELSWARD’19), Springer, Prague,
Czech Republic. pp. 225-245.

28

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wort-
mann, A., 2018a. Controlled and Extensible Variability
of Concrete and Abstract Syntax with Independent Lan-
guage Features, in: Proceedings of the 12th International
Workshop on Variability Modelling of Software Intensive
Systems (VAMOS’18), ACM, Madrid, Spain. pp. 75-82.

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wort-
mann, A., 2018b. Modeling Language Variability with
Reusable Language Components, in: Berger, T., Borba,
P. (Eds.), Proceedings of the 22nd International Systems
and Software Product Line Conference (SPLC’18), ACM,
Gothenburg, Sweden. pp. 65-75.

Cardelli, L., 1988. Structural Subtyping and the Notion
of Power Type, in: Ferrante, J., Peter, M. (Eds.), Pro-
ceedings of the 15th ACM Symposium on Principles of
Programming Languages (POPL’88), ACM, San Diego,
CA, USA. pp. 70-79.

Cardozo, N., Giinther, S., D’Hondt, T., Mens, K., 2011.
Feature-Oriented Programming and Context-Oriented
Programming: Comparing Paradigm Characteristics by
Example Implementations, in: Hartmann, H., Breivold,
H.P. (Eds.), Proceedings of the 6th International Con-
ference on Software Engineering Advances (ICSEA’11),
IARIA, Barcelona, Spain. pp. 130-135.

Cazzola, W., 2012. Domain-Specific Languages in Few
Steps: The Neverlang Approach, in: Gschwind, T.,
De Paoli, F., Gruhn, V., Book, M. (Eds.), Proceedings
of the 11" International Conference on Software Com-
position (SC’12), Springer, Prague, Czech Republic. pp.
162-177.

Cazzola, W., Favalli, L., 2022. Towards a Recipe for
Language Decomposition: Quality Assessment of Lan-
guage Product Lines. Empirical Software Engineering 27.
doi:10.1007/510664-021-10074- 6.

Cazzola, W., Favalli, L., 2024. Software Modernization
Powered by Dynamic Language Product Lines. Journal
of Systems and Software 218. doi:10.1016/j.jss.2024.
112188.

Cazzola, W., Olivares, D.M., 2016. Gradually Learn-
ing Programming Supported by a Growable Program-
ming Language. IEEE Transactions on Emerging Top-
ics in Computing 4, 404-415. doi:10.1109/TETC.2015.
2446192. special Issue on Emerging Trends in Education.

Cazzola, W., Poletti, D., 2010. DSL Evolution through
Composition, in: Proceedings of the 7% ECOOP Work-
shop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’10), ACM, Maribor, Slovenia.

Cazzola, W., Vacchi, E., 2013. Neverlang 2: Componen-
tised Language Development for the JVM, in: Binder,
W., Bodden, E., Lowe, W. (Eds.), Proceedings of the
12 International Conference on Software Composition
(SC’13), Springer, Budapest, Hungary. pp. 17-32.

https://doi.org/10.1016/j.jss.2025.112554
http://dx.doi.org/10.1016/j.jss.2023.111809
http://dx.doi.org/10.1007/s10664-021-10074-6
http://dx.doi.org/10.1016/j.jss.2024.112188
http://dx.doi.org/10.1016/j.jss.2024.112188
http://dx.doi.org/10.1109/TETC.2015.2446192
http://dx.doi.org/10.1109/TETC.2015.2446192

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Chang, S., Knauth, A., Greenman, B., 2017. Type Sys-
tems as Macros, in: Gordon, A.D. (Ed.), Proceedings
of the 44th Symposium on Principles of Programming
Languages (PoPL’17), ACM, Paris, France. pp. 694-705.

Clements, P., Northrop, L., 2001. Software Product Lines:
Practices and Patterns. Addison-Wesley.

Cook, W.R., Hill, W., Canning, P.S., 1990. Inheritance
Is Not Subtyping, in: Allen, FE. (Ed.), Proceedings of
the 17th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’90), ACM, San
Francisco, CA, USA. pp. 125-135.

Cooper, K.D., Torczon, L., 2022. Engineering a Compiler.
Morgan Kaufmann.

Crane, M.L., Dingel, J., 2005. UML vs. Classical vs.
Rhapsody Statecharts: Not All Models Are Created Equal,
in: Briand, L., Williams, C. (Eds.), Proceedings of the 8th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS’05), Springer, Mon-
tego Bay, Jamaica. pp. 97-112.

Czarnecki, K., Helsen, S., Eisenecker, U., 2004. Staged
Configuration Using Feature Models, in: Weiss, D., van
Ommering, R. (Eds.), Proceedings of the 3rd Interna-
tional Conference on Software Product-Line (SPLC’04),
Springer, Boston, MA, USA. pp. 266-283.

Damiani, F., Schaefer, 1., Winkelmann, T., 2014. Delta-
Oriented Multi Software Product Lines, in: Heymans,
P., Rubin, J. (Eds.), Proceedings of 18th International
Software Product Line Conference (SPLC’14), ACM,
Florence, Italy. pp. 232-236.

Damini, F., Lienhardt, M., Paolini, L., 2019. A Formal
Model for Multi Software Product Lines. Science of
Computer Programming 172, 203-231.

Deelstra, S., Sinnema, M., Bosch, J., 2005. Product
Derivation in Software Product Families: A Case Study.
Journal of Systems and Software 74, 173—-194.

Degueule, T., Combemale, B., Blouin, A., Barais, O.,
Jézéquel, J.M., 2015. Melange: a Meta-Language for
Modular and Reusable Development of DSLs, in: Di Rus-
cio, D., Volter, M. (Eds.), Proceedings of the 8th Inter-
national Conference on Software Language Engineering
(SLE’15), ACM, Pittsburgh, PA, USA. pp. 25-36.

Del Sole, A., 2023. Visual Studio Distilled. Third ed.,
Apress.

Ekman, T., Hedin, G., 2007. The JastAdd System —
Modular Extensible Compiler Construction. Science of
Computer Programming 69, 14-26.

El-Sharkawy, S., Kroher, C., Schmid, K., 2011. Support-
ing Heterogeneous Compositional Multi Software Prod-
uct Lines, in: Santana de Almeida, E., Kishi, T. (Eds.),

29

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

Proceedings of the 15th International Software Product
Line Conference (SPLC’11), IEEE, Miinich, Germany.
pp. 14.

Erdweg, S., van der Storm, T., Volter, M., Boersma, M.,
Bosman, R., Cook, W.R., Gerrtsen, A., Hulshout, A.,
Kelly, S., Loh, A., Konat, G.D.P., Molina, P.J., Palatnik,
M., Pohjonen, R., Schindler, E., Schindler, K., Solmi,
R., Vergu, V.A,, Visser, E., 2013. The State of the Art
in Language Workbenches, in: Erwig, M., Paige, R.F,,
Van Wyk, E. (Eds.), Proceedings of the 6th International
Conference on Software Language Engineering (SLE’13),
Springer, Indianapolis, USA. pp. 197-217.

Favalli, L., Kiihn, T., Cazzola, W., 2020. Neverlang and
FeatureIDE Just Married: Integrated Language Product
Line Development Environment, in: Collet, P., Nadi, S.
(Eds.), Proceedings of the 24th International Software
Product Line Conference (SPLC’20), ACM, Montréal,
Canada. pp. 285-295.

Fenwick, P.M., 1994. A New Data Structure for Cumula-
tive Frequency Tables. Software: Practice and Experience
24, 327-336.

Fowler, M., 2005. Inversion of Control. Martin
Fowler’s Blog. URL: https://martinfowler.com/
bliki/InversionOfControl.html.

Frakes, W., Terry, C., 1996. Software Reuse: Metrics and
Models. ACM Computing Surveys 28, 415-435.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Professional Computing Series, Addison-
Wesley, Reading, Ma, USA.

Graham, S.L., Haley, C.B., Joy, W.N., 1979. Practical LR
Error Recovery, in: Johnson, S.C. (Ed.), Proceedings of
the 1979 Sigplan Symposium on Compiler Construction
(CC’79), ACM, Denver, CO, USA. pp. 168-175.

Gray, II, E.J., 2007. TextMate: Power Editing for the
Mac. Pragmatic Bookshelf.

Griss, M.L., 2000. Implementing Product-Line Features
with Component Reuse, in: Frakes, W.B. (Ed.), Proceed-
ings of the 6th International Conference on Software
Reuse (ICSR’00), Springer, Vienna, Austria. pp. 137-
151.

Gronninger, H., Krahn, H., Rumpe, B., Schindler, M.,
Volkel, S., 2008. MontiCore: A Framework for the De-
velopment of Textual Domain Specific Languages, in:
Schifer, W., Dwyer, M., Gruhn, V. (Eds.), Companion
Proceedings of the 30th International Conference on Soft-
ware Enginering (Companion ICSE’08), IEEE, Leipzig,
Germany. pp. 925-926.

https://doi.org/10.1016/j.jss.2025.112554
https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Gunasinghe, N., Marcus, N., 2022. Language Server Pro-
tocol and Implementation: Supporting Language-Smart
Editing and Programming Tools. Apress.

Hartmann, H., Trew, T., 2008. Using Feature Diagrams
with Context Variability to Model Multiple Product Lines
for Software Supply Chains, in: Geppert, B. (Ed.), Pro-
ceedings of the 12th International Software Product Line
Conference (SPLC’08), IEEE, Limerick, Ireland. pp. 12—
21.

Haugen, @., Mgller-Pedersen, B., Oldevik, J., Olsen,
G.K., Svendsen, A., 2008. Adding Standardized Variabil-
ity to Domain Specific Languages, in: Pohl, K., Geppert,
B. (Eds.), Proceedings of the 12th International Software
Product Line Conference (SPLC’08), IEEE, Limerick,
Ireland. pp. 139-148.

Heidenreich, F., Johannes, J., Karol, S., Seifert, M.,
Wende, C., 2011. Model-Based Language Engineering
with EMFText, in: Liammel, R., Visser, J., Saraiva, J.
(Eds.), Proceedings of the International Summer School
on Generative and Transformational Techniques in Soft-
ware Engineering (GTTSE’11), Springer, Braga, Portugal.
pp. 322-345.

Hindley, R., 1969. The Principal Type-Scheme of an Ob-
ject in Combinatory Logic. Transactions of the America
Mathematical Society 146, 29—60.

Holl, G., Griinbacher, P., Rabiser, R., 2012. A Systematic
Review and an Expert Survey on Capabilities Supporting
Multi-Product Lines. Information and Software Technol-
ogy 54, 828-852.

Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema,
M., Nijhuis, G.J., MacGregor, J., 2006. Configuration in
Industrial Product Families: The ConIPF Methodology.
10S Press.

Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P.,
Liang, Z., 2016. Data-Oriented Programming: On the Ex-
pressiveness of Non-control Data Attacks, in: Shmatikov,
V., Erlingsson, U. (Eds.), Proceedings of the 2016 IEEE
Symposium on Security and Privacy (SP’16), IEEE, San
Jose, CA, USA. pp. 969-986.

Hudak, P., 1998. Modular Domain Specific Languages
and Tools, in: Devanbu, P., Poulin, J. (Eds.), Proceedings
of the 5th International Conference on Software Reuse
(ICSR’98), IEEE, Victoria, BC, Canada. pp. 134—-142.

Hughes, J., 1989. Why Functional Programming Matters.
The Computer Journal 32, 98-107.

Hiirsch, W., Videira Lopes, C., 1995. Separation of Con-
cerns. Technical Report NU-CCS-95-03. Northeastern
University, Boston.

30

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

Jordan, T., Zib, S., 2024. A Langium-Based Approach to
BigER. Bachelor’s thesis. Technische Universitiat Wien.
Wien, Austria.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Pe-
terson, A.S., 1990. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21. Carnegie Mellon University. Pittsburgh, Penn-
sylvania, USA.

Kaistner, C., Apel, S., Ostermann, K., 2006. The
Road to Feature Modularity?, in: Schifer, 1., John, L.,
Schmid, K. (Eds.), Proceedings of the 3rd Workshop
on Feature-Oriented Software Development (FOSD’11),
ACM, Miinich, Germany.

Kats, L.C.L., Visser, E., 2010. The Spoofax Language
Workbench: Rules for Declarative Specification of Lan-
guages and IDEs, in: Rinard, M., Sullivan, K.J., Stein-
berg, D.H. (Eds.), Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA’10), ACM, Reno,
Nevada, USA. pp. 444-463.

Kats, L.C.L., Visser, E., Wachsmuth, G., 2010. Pure
and Declarative Syntax Definition: Paradise Lost and
Regained, in: Proceedings of ACM Conference on New
Ideas in Programming and Reflections on Software (On-
ward! 2010), ACM, Reno-Tahoe, Nevada, USA.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., Griswold, B., 2001. An Overview of Aspect], in: Knud-
sen, J.L. (Ed.), Proceedings of the 15th European Con-
ference on Object-Oriented Programming (ECOOP’01),
Springer-Verlag, Budapest, Hungary. pp. 327-353.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Videira Lopes, C., Loingtier, J.M., Irwin, J., 1997. Aspect-
Oriented Programming, in: Aksit, M., Matsuoka, S.
(Eds.), 11th European Conference on Object Oriented
Programming (ECOOP’97), Springer-Verlag, Helsinki,
Finland. pp. 220-242.

Klint, P, van der Storm, T., Vinju, J., 2009. EASY
Meta-Programming with Rascal, in: Fernandes, J.M.,
Lammel, R., Visser, J., Saraiva, J. (Eds.), Proceedings
of the International Summer School on Generative and

Transformational Techniques in Software Engineering I11
(GTTSE’09), Springer, Braga, Portugal. pp. 222-289.

Knuth, D.E., 1997. The Art of Computer Programming:
Fundamental Algorithms. third ed., Addison Wesley.

Kosar, T., Bohra, S., Mernik, M., 2016. Domain Specific
Languages: A Systematic Mapping Study. Information
and Software Technology 71, 77-91.

Koscielny, J., Holthusen, S., Schaefer, 1., Schulze, S., Bet-
tini, L., Ferruccio, D., 2014. DeltaJ 1.5: Delta-Oriented
Programming for Java 1.5, in: Childers, B. (Ed.), Proceed-
ings of the 2014 International Conference on Principles

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

[81]

(82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

and Practices of Programming on the Java platform: Vir-
tual machines, Languages, and Tools (PPPJ’14), ACM,
Cracow, Poland. pp. 63-74.

Krahn, H., Rumpe, B., Volkel, S., 2007. Efficient Ed-
itor Generation for Compositional DSLs in Eclipse, in:
Tolvanen, J.P., Gray, J., Rossi, M., Sprinkle, J. (Eds.),
Proceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling (DSM’07), Montréal, Canada.

Krahn, H., Rumpe, B., Volkel, S., 2010. MontiCore: A
Framework for Compositional Development of Domain
Specific Languages. International Journal on Software
Tools for Technology Transfer 12, 353-372.

Krueger, C.W., 1992. Software Reuse. ACM Computing
Surveys 24, 131-183.

Krueger, C.W., 2006. New Methods in Software Product
Line Practice. Communications of the ACM 49, 37-40.

Kiihn, T., Cazzola, W., 2016. Apples and Oranges:
Comparing Top-Down and Bottom-Up Language Prod-
uct Lines, in: Rabiser, R., Xie, B. (Eds.), Proceedings of
the 20th International Software Product Line Conference
(SPLC’16), ACM, Beijing, China. pp. 50-59.

Kiihn, T., Cazzola, W., Olivares, D.M., 2015. Choosy and
Picky: Configuration of Language Product Lines, in: Bot-
terweck, G., White, J. (Eds.), Proceedings of the 19th In-
ternational Software Product Line Conference (SPLC’15),
ACM, Nashville, TN, USA. pp. 71-80.

Kiihn, T., Cazzola, W., Pirritano Giampietro, N., Poggi,
M., 2019. Piggyback IDE Support for Language Product
Lines, in: Thiim, T., Duchien, L. (Eds.), Proceedings of
the 23rd International Software Product Line Conference
(SPLC’19), ACM, Paris, France. pp. 131-142.

Kiihn, T., Leuthduser, M., Gotz, S., Seidl, C., ABmann,
U.,2014. A Metamodel Family for Role-Based Modeling
and Programming Languages, in: Combemale, B., Pearce,
D.J., Barais, O., Vinju, J. (Eds.), Proceedings of the 7th
International Conference Software Language Engineering
(SLE’14), Springer, Visteras, Sweden. pp. 141-160.

Kumar, A., Kumar, A., Iyyappan, M., 2016. Applying
Separation of Concern for Developing Softwares Using
Aspect Oriented Programming Concepts. Procedia Com-
puter Science 85, 906-914.

Laddad, R., 2003. Aspect] in Action: Pratical Aspect-
Oriented Programming. Manning Pubblications Com-

pany.

de Lara, J., Guerra, E., 2021. Language Family Engineer-
ing With Product Lines of Multi-Level Models. Formal
Aspects of Computing 33, 1173—-1208.

31

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

de Lara, J., Guerra, E., Bottoni, P., 2022. Modular Lan-
guage Product Lines: A Graph Transformation Approach,
in: Bencomo, N., Wimmer, M. (Eds.), Proceedings of
the 25th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS’22), ACM,
Montréal, Canada. pp. 334-344.

Liebig, J., Daniel, R., Apel, S., 2013. Feature-Oriented
Language Families: A Case Study, in: Collet, P, Schmid,
K. (Eds.), Proceedings of the 7th International Workshop
on Variability Modelling of Software-intensive Systems
(VaMoS’13), ACM, Pisa, Italy.

van der Linden, F., Schmid, K., Rommes, E., 2007. Soft-
ware Product Lines in Action: The Best Industrial Prac-
tice in Product Line Engineering. Springer.

Mikitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen,
T., Capilla, R., 2020. On Opportunistic Software Reuse.
Computing 102, 2385-2408.

Méndez-Acuiia, D., Galindo, J.A., Combemale, B.,
Blouin, A., Baudry, B., 2016. Puzzle: A Tool for Ana-
lyzing and Extracting Specification Clones in DSLs, in:
Kapitsaki, G.M., Santana de Almeida, E. (Eds.), Proceed-
ings of the International Conference on Software Reuse
(ICSR’16), Springer, Limassol, Cyprus. pp. 393-396.

Méndez-Acuiia, D., Galindo, J.A., Combemale, B.,
Blouin, A., Baudry, B., 2017. Reverse Engineering Lan-
guage Product Lines from Existing DSL Variants. Journal
of Systems and Software 133, 145-158.

Méndez-Acuiia, D., Galindo, J.A., Degueule, T., Combe-
male, B., Baudry, B., 2016. Leveraging Software Product
Lines Engineering in the Development of External DSLs:
A Systematic Literature Review. Computer Languages,
Systems & Structures 46, 206-235.

Mernik, M., Heering, J., Sloane, A.M., 2005. When
and How to Develop Domain Specific Languages. ACM
Computing Surveys 37, 316-344.

Metzger, A., Pohl, K., 2014. Software Product Line Engi-
neering and Variability Management: Achievements and
Challenges, in: Dwyer, M.B., Herbsleb, J. (Eds.), Pro-
ceedings of Future of Software Engineering (FoSE’14),
ACM, Hyderabad, India. pp. 70-84.

Milner, R., 1978. A Theory of Type Polymorphism in
Programming. Journal of Computer and System Sciences
17, 348-375.

Mosses, P.D., 2004. Modular Structural Operational Se-
mantics. The Journal of Logic and Algebraic Program-
ming 60-61, 195-228.

Mosses, P.D., 2019. A Component-Based Formal
Language Workbench, in: Monahan, R., Prevosto, V.,
Proenca, J. (Eds.), Proceedings of the 5Sth Workshop on
Formal Integrated Development Environment (F-IDE’19),
Porto, Portugal. pp. 29-34.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Mosses, P.D., Vesely, F., 2014. FunKons: Component-
Based Semantics in K, in: Escobar, S. (Ed.), Proceedings
of the 10th International Workshop on Rewriting Logic
and its Applications (WRLA’14), Springer, Grenoble,
France. pp. 213-229.

Murphy, G.C., Kersten, M., Findlater, L., 2006. How Are
Java Software Developers Using the Eclipse IDE? IEEE
Software 23, 76-83.

Ng, K., Warren, M., Golde, P., Hejlberg, A., 2011. The
Roslyn Project: Exposing the C# and VB Compiler’s
Code Analysis. White Paper. Microsoft.

Niephaus, F., Rein, P., Edding, J., Hering, J., Konig,
B., Opahle, K., Scordialo, N., Hirschfeld, R., 2020.
Example-Based Live Programming for Everyone: Build-
ing Language-Agnostic Tools for Live Programming with
LSP and GraalVM, in: Proceedings of the ACM Inter-
national Symposium on New Ideas, New Paradigms and
Reflection on Programming and Software (Onward!’20),
ACM, Virtual, USA. pp. 1-17.

van Ommering, R., 2001. Configuration Management in
Compoent Based Product Populations, in: Westfechtel,
B., Hoek, A. (Eds.), Proceedings of the Internationa Work-
shop on Software Configuration Management (SCM’01),
Springer, Toronto, Canada. pp. 16-23.

Pacak, A., Erdweg, S., Szabd, T., 2020. A Systematic
Approach to Deriving Incremental Type Checkers, in:
Grove, D. (Ed.), Proceedings of the 35th Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’20), ACM, Chicago, IL, USA.
pp. 1-28.

Parr, T., 2009. Language Implementation Patterns: Create
Your Own Domain-Specific and General Programming
Languages. Pragmatic Bookshelf.

Pierce, B.C., 2002. Types and Programming Languages.
MIT Press.

Pohl, K., Bockle, K., van der Linden, F.J., 2005. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer.

Prehofer, C., 1997. Feature-Oriented Programming: A
Fresh Look at Objects, in: Aksit, M., Matsuoka, S. (Eds.),
Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP’97), Springer, Helsinki,
Finland. pp. 419-443.

Prehofer, C., 2001. Feature-Oriented Programming: A
New Way of Object Composition. Concurency and Com-
putation: Practice and Experience 13, 465-501.

Rabiser, R., Griinbacher, P., Dhungana, D., 2010. Re-
quirements for Product Derivation Support: Results from
a Systematic Literature Review and an Expert Survey.
Journal of Information and Software Technology 52.

32

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Rabiser, R., O’Leary, P., Richardsonl, I., 2011. Key
Activities for Product Derivation in Software Product
Lines. Journal of Sustems and Software 84, 285-300.

Rask, J.K., Madsen, F.P.,, Battle, N., Macedo, H.D.,
Larsen, P.G., 2021. The Specification Language Server
Protocol: A Proposal for Standardised LSP Extensions,
in: Paskevich, A., Proenca, J. (Eds.), Proceedings of the
6th Workshop on Formal Integrated Development Envi-
ronment (F-IDE’21), Elsevier, Held On-Line. pp. 3—18.

Rentsch, T., 1982. Object Oriented Programming. Sig-
plan Notices 17, 51-57.

Richter, H., 1985. Noncorrecting Syntax Error Recov-
ery. ACM Transactions on Programming Languages and
Systems 7, 478-489.

Robinson, J.A., 1965. A Machine-Oriented Logic Based
on the Resolution Principle. J. ACM 12, 23-41.

Rodriguez-Echeverria, R., Canovas Izquierdo, J.L., Wim-
mer, M., Cabot, J., 2018a. An LSP Infrastructure to Build
EMF Language Servers for Web-Deployable Model Edi-
tors, in: Hebig, R., Berger, T. (Eds.), Proceedings of the
2nd International Workshop on Model-Driven Engineer-
ing Tools (MDE-Tools’18), CEUR, Copenhage, Denmark.
pp. 1-10.

Rodriguez-Echeverria, R., Cdnovas Izquierdo, J.L., Wim-
mer, M., Cabot, J., 2018b. Towards a Language Server
Protocol Infrastructure for Graphical Modeling, in: Paige,
R., Haugen, @. (Eds.), Proceedings of the 21st Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS’18), ACM, Copenhagen,
Denmark. pp. 370-380.

Rosenmiiller, M., Siegmund, N., 2010. Automating
the Configuration of Multi Software Product Lines, in:
David Benavides, D., Batory, D.S., Griinbacher, P. (Eds.),
Proceedings of the 4th International Workshop on Vari-
ability Modelling of Software-Intensive Systems (Va-
MoS’10), Universitidt Duisburg-Essen, Linz, Austria. pp.
123-130.

Rosenmiiller, M., Siegmund, N., Késtner, C., ur Rahman,
S.S., 2008. Modeling Dependent Software Product Lines,
in: Loughran, N., Groher, 1., Lopez-Herrejon, R., Apel, S.,
Schwanninger, C. (Eds.), Proceedings of the GPCE Work-
shop on Modularization, Composition and Generative
Techniques for Product Line Engineering (McGPLE’08),
University of Passau, Nashville, TN, USA. pp. 13-18.

Rosenmiiller, M., Siegmund, N., Thiim, Saake, G., 2011.
Multi-Dimensional Variability Modeling, in: Czarnecki,
K., Eisenecker, U.W. (Eds.), Proceedings of the 5th Work-
shop on Variability Modeling of Software-Intensive Sys-
tems (VaMoS’11), ACM, Namur, Belgium. pp. 11-20.

Ryabko, B., 1992. A Fast On-Line Adaptive Code. IEEE
Transactions on Information Theory 38, 1400-1404.

https://doi.org/10.1016/j.jss.2025.112554

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

[127] Schaefer, 1., Bettini, L., Bono, V., Damiani, F., Tanzarella,
N., 2010. Delta-Oriented Programming of Software Prod-
uct Lines, in: Bosch, J., Lee, J. (Eds.), Proceedings of
the 14th International Software Product Line Conference
(SPLC’10), Springer, Jeju Island, South Korea. pp. 77-91.

[128] Skiadas, C., Kjosmoen, T., 2007. ZTEXing with TextMate.
The PracTEX Journal 3.

[129] Steinberg, D., Budinsky, D., Paternostro, M., Merks, E.,
2008. EMF: Eclipse Modeling Framework. Addison-
Wesley.

[130] van der Storm, T., 2011. The Rascal Language Work-
bench. Technical Report SEN-1111. CWIL.

[131] Sweet, R.E., 1985. The Mesa Programming Environment.
ACM Sigplan Notice 20, 216-229.

[132] Vacchi, E., Cazzola, W., 2015. Neverlang: A Framework
for Feature-Oriented Language Development. Computer
Languages, Systems & Structures 43, 1-40. doi:10.1016/
j.cl.2015.02.001.

[133] Vacchi, E., Cazzola, W., Combemale, B., Acher, M.,
2014a. Automating Variability Model Inference for
Component-Based Language Implementations, in: Hey-
mans, P., Rubin, J. (Eds.), Proceedings of the 18th Inter-
national Software Product Line Conference (SPLC’14),

ACM, Florence, Italy. pp. 167-176.

[134] Vacchi, E., Cazzola, W., Pillay, S., Combemale, B., 2013.
Variability Support in Domain-Specific Language Devel-
opment, in: Erwig, M., Paige, R.F., Van Wyk, E. (Eds.),
Proceedings of 6 International Conference on Software
Language Engineering (SLE’13), Springer, Indianapolis,
USA. pp. 76-95.

[135] Vacchi, E., Olivares, D.M., Shagqiri, A., Cazzola, W.,
2014b. Neverlang 2: A Framework for Modular Lan-
guage Implementation, in: Proceedings of the 13th In-
ternational Conference on Modularity (Modularity’14),

ACM, Lugano, Switzerland. pp. 23-26.

[136] Vanbrabant, R., 2008. Google Guice: Agile Lightweight

Dependency Injection Framework. Apress.

[137] Vélter, M., 2011. Language and IDE Modularization
and Composition with MPS, in: Lidmmel, R., Saraiva, J.a.,
Visser, J. (Eds.), Proceedings of the 4th International Sum-
mer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE’11), Springer,

Braga, Portugal. pp. 383-430.

[138] Volter, M., Pech, V., 2012. Language Modularity with
the MPS Language Workbench, in: Proceedings of the
34th International Conference on Software Engineering

(ICSE’12), IEEE, Ziirich, Switzerland. pp. 1449-1450.

[139] Wachsmuth, G.H., Konat, G.D.P., Visser, E., 2014. Lan-
guage Design with the Spoofax Language Workbench.

IEEE Software 31, 35-43.

33

[140] Wende, C., Thieme, N., Zschaler, S., 2009. A Role-Based
Approach towards Modular Language Engineering, in:
van den Brand, M., Gasevié, D., Gray, J. (Eds.), Proceed-
ings of the 2nd International Conference on Software
Language Engineering (SLE’09), Springer, Denver, CO,
USA. pp. 254-273.

[141] White, J., Hill, J.H., Gray, J., Tambe, S., Gokhale, A.,
Schmidt, D.C., 2009. Improving Domain-specific Lan-
guage Reuse with Software Product-Line Configuration

Techniques. IEEE Software 26, 47-53.

[142] Wiirthinger, T., Wimmer, C., WoB, A., Stadler, L., Du-
boscq, G., Humer, C., Richards, G., Simon, D., Wolczko,
M., 2013. One VM to Rule Them All, in: Hirschfeld,
R. (Ed.), Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software (Onward!’13), ACM,

Indianapolis, IN, USA. pp. 187-204.

Zschaler, S., Sanchez, P., Santos, J., Alférez, M., Rashid,
A., Fuentes, L., Moreira, A., Aragjo, J., Kulesza, U.,
2009. VML*—A Family of Languages for Variability
Management in Software Product Lines, in: van den
Brand, M., Gasevi¢, D., Gray, J. (Eds.), Proceedings of
the 2nd International Conference on Software Language
Engineering (SLE’09), Springer, Denver, CO, USA. pp.
82-102.

[143]

Federico Bruzzone is currently a Ph.D. stu-
dent in Computer Science at Universita degli
Studi di Milano, Italy. He was born in 2000
and since he was a child he has been passion-
ate about computer science and music. He
got his bachelor degree in Musical Computer
Science, the master degree in Computer Sci-
ence and currently he is involved in the research activity of the
ADAPT Lab. His main research interests are (but are not limited
to) programming languages and compilers, software mainte-
nance and evolution. For any question he can be contacted at
federico.bruzzone@unimi.it.

Walter Cazzola is currently a Full Profes-
sor in the Department of Computer Science
of the Universita degli Studi di Milano, Italy
and the Chair of the ADAPT laboratory. Dr.
Cazzola designed the mChaRM framework,
@Java, [a]C#, Blueprint programming lan-
guages and he is currently involved in the
designing and development of the Neverlang language work-
bench. He also designed the JavAdaptor dynamic software
updating framework and its front-end FIGA. He has written over
100 scientific papers. His research interests include (but are not
limited to) software maintenance, evolution and comprehension,
programming methodologies and languages. He served on the
program committees or editorial boards of the most important
conferences and journals about his research topics. He is asso-
ciate editor for the Journal of Computer Languages published
by Elsevier. More information about Dr. Cazzola and all his

https://doi.org/10.1016/j.jss.2025.112554
http://dx.doi.org/10.1016/j.cl.2015.02.001
http://dx.doi.org/10.1016/j.cl.2015.02.001
federico.bruzzone@unimi.it

Cite as: F. Bruzzone, W. Cazzola, and L. Favalli. Code Less to Code More: Streamlining Language Server Protocol and Type
System Development for Language Families. Journal of Systems and Software, June 2025. DOI: 10.1016/j.jss.2025.112554

publications are available at http://cazzola.di.unimi.it and
he can be contacted at cazzola@di.unimi.it for any question.

Luca Favalli is currently a Computer Science
Postdoctoral Researcher at Universita degli
Studi di Milano. He got his PhD in computer
science from the Universita degli Studi di Mi-
lano. He is involved in the research activity
of the ADAPT Lab and in the development
of the Neverlang language workbench and of
JavAdaptor. His main research interests are software design,
software (and language) product lines and dynamic software
updating with a focus on how they can be used to ease the
learning of programming languages. He can be contacted at
favalli@di.unimi.it for any question.

34

https://doi.org/10.1016/j.jss.2025.112554
http://cazzola.di.unimi.it
cazzola@di.unimi.it
favalli@di.unimi.it

