
Meta-Monomorphizing Specializations1

Anonymous author2

Anonymous affiliation3

Anonymous author4

Anonymous affiliation5

Abstract6

Achieving zero-cost specialization remains a fundamental challenge in programming language and7

compiler design. It often necessitates trade-offs between expressive power and type system soundness,8

as the interaction between conditional compilation and static dispatch can easily lead to unforeseen9

coherence violations and increased complexity in the formal model. This paper introduces meta-10

monomorphizing specializations, a novel framework that achieves specialization by repurposing11

monomorphization through compile-time metaprogramming. Instead of modifying the host compiler,12

our approach generates meta-monomorphized traits and implementations that encode specialization13

constraints directly into the type structure, enabling deterministic, coherent dispatch without14

overlapping instances. We formalize this method for first-order, predicate-based, and higher-ranked15

polymorphic specialization, also in presence of lifetime parameters. Our evaluation, based on a Rust16

implementation using only existing macro facilities, demonstrates that meta-monomorphization17

enables expressive specialization patterns—previously rejected by the compiler—while maintaining18

full compatibility with standard optimization pipelines. We show that specialization can be realized19

as a disciplined metaprogramming layer, offering a practical, language-agnostic path to high-20

performance abstraction. A comprehensive study of public Rust codebases further validates our21

approach, revealing numerous workarounds that meta-monomorphization can eliminate, leading to22

more idiomatic and efficient code.23

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its24

engineering → Software design engineering; Software and its engineering → Correctness25

Keywords and phrases Monomorphization, Specialization, Metaprogramming, Higher-Ranked Poly-26

morphism, Rust, Compile-time Code Generation27

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2328

Supplementary Material Anonymous supplementary material29

1 Introduction30

Monomorphization. A principal challenge in high-performance systems programming is31

achieving zero-cost abstraction through parametric polymorphism [18, 76].1 Grounded in the32

theoretical frameworks of System F [32, 77, 16] and Hindley-Milner type systems [40, 64], it33

enables the definition of function abstractions and algebraic data types [55, 89, 9] (ADTs)34

that operate uniformly across types, bypassing the type-specific dispatch characteristic35

of ad hoc polymorphism [82]. To reconcile high-level generality with hardware efficiency,36

many statically typed languages—including C++ [84], Rust [62], Go [35], MLton [20, 94],37

and Futhark [41]—leverage compile-time monomorphization [57]. The monomorphization38

process generates a dedicated, specialized version of a generic function for each concrete type39

instantiation. By statically resolving types at compile-time, monomorphization eliminates the40

1Functions and data structures defined through parametric polymorphism are referred to as generic
functions and generic data types, respectively; these abstractions constitute the foundational building
blocks of generic programming [67, 7].

© Anonymous author(s);
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Meta-Monomorphizing Specializations

need for heap-allocated indirections and the overhead of dynamic dispatch, fulfilling the zero-41

cost promise. However, the applicability of monomorphization is not universal. While effective42

for predicative type systems (i.e., rank-1 polymorphism), its complexity escalates significantly43

within higher-ranked type systems [31, 47, 43].2 Lutze et al. [57] presented a foundational44

study on monomorphization that is not only accessible but also generalizes to higher-rank and45

existential polymorphism. In practice, optimizing compilers [1, 48, 27] rely on interprocedural46

data-flow analyses to perform procedure cloning [25, 26]. They create specialized copies47

of function bodies for specific type arguments, enabling aggressive optimizations such as48

inlining [80], constant propagation [17, 95], and dead code elimination [51, 66].349

Specialization. Beyond automatic monomorphization, specialization represents a sophisti-50

cated form of ad hoc polymorphism. It permits developers to refine generic abstractions by51

providing manual, high-priority implementations for specific type instantiations, overriding52

general-purpose logic with tailored behavior. This practice enables further performance gains53

by exploiting hardware-specific instructions (e.g., SIMD) or eliminating logic that becomes54

redundant under specific data characteristics [3]. Specialization is not merely confined to55

functions; it extends to polymorphic interface types, such as traits in Rust and type classes in56

Haskell. These constructs enable the definition of behavior that can be specialized based on57

the types that implement them. However, specializing such interfaces introduces additional58

complexities, particularly concerning coherence [76, 44, 28] and overlapping instances [86].59

Coherence ensures a unique implementation for each type, thereby preventing ambiguity60

in method resolution; in Rust, this is enforced through the orphan rules.4 Overlapping61

instances arise when multiple implementations could apply to the same type, leading to62

potential conflicts and inconsistencies. Many programming languages have explored various63

mechanisms to facilitate specialization, with varying degrees of automation and user control.64

For instance, C++ templates [84] allow for explicit specialization of template functions,5 while65

the Rust community has introduced an experimental specialization feature [59]. Nevertheless,66

to date, this feature remains confined to the nightly channel [79], as stabilization attempts67

have stalled due to potential soundness issues and implementation complexities [90].68

Limitations. Rust is not unique in confronting challenges when implementing specialization69

features. The Project Valhalla6 for Java, which aims to introduce value types and generic70

specialization,7 has encountered significant hurdles related to backward compatibility and71

runtime performance, which led to the adoption of type erasure. Scala’s @specialized72

annotation [69] allows for generating specialized versions of generic classes for primitive73

types, thereby avoiding boxing overhead. However, the exponential code bloat resulting from74

multiple type specializations has raised concerns regarding maintainability and compilation75

times. While Haskell cannot employ template-based specialization [81, 58], its SPECIALIZE76

pragma [74] leverages the dictionary-passing implementation of type classes [75] to generate77

specialized versions of functions for specific type class instances. However, the undecidability78

of polymorphic recursion [38, 49] and higher-rank types complicates the specialization process,79

often necessitating manual intervention to guide the compiler [70].80

Motivation. Specialization is a potent tool for optimizing performance-critical code sec-81

2https://okmij.org/ftp/Computation/typeclass.html
3For additional information, we refer readers to [8].
4https://doc.rust-lang.org/reference/items/implementations.html#orphan-rules
5Partial template specialization, conversely, aims at specializing class templates based on a subset of

their template parameters.
6https://openjdk.org/projects/valhalla/
7https://mail.openjdk.org/pipermail/valhalla-dev/2014-July/000000.html

https://okmij.org/ftp/Computation/typeclass.html
https://doc.rust-lang.org/reference/items/implementations.html#orphan-rules
https://openjdk.org/projects/valhalla/
https://mail.openjdk.org/pipermail/valhalla-dev/2014-July/000000.html

Anonymous author(s) 23:3

tions, particularly in systems programming and high-performance computing domains. Fur-82

thermore, it can enhance code clarity and maintainability by encapsulating type-specific83

logic within specialized implementations, thereby reducing the need for complex condi-84

tional logic in generic code. Languages lacking robust specialization mechanisms often85

compel developers to resort to workarounds, such as manual code duplication or intri-86

cate type-level programming, which can lead to code bloat and maintenance challenges.87

1 trait Trait { fn f(&self); }

3 impl<T> Trait for T {

4 fn f(&self) { ... }

5 }

7 impl Trait for i32 {

8 fn f(&self) { ... }

9 }

Listing 1 A motivating example.

Consequently, there is a pressing need for effective88

specialization mechanisms that balance performance,89

usability, and maintainability. For instance, consider90

the Rust code snippet in Listing 1. The interface type91

Trait is implemented for both i32 and all other types92

∀T where T ̸= i32. As shown in Listing 2, Rust’s93

stable toolchain currently rejects this code due to94

overlapping implementations, a direct consequence of95

its unimplemented specialization support. Although96

this specialization pattern can be emulated within97

the host language (see Listing 1), the implementation complexities and potential soundness98

issues have historically hindered the development of robust specialization mechanisms in99

many languages. We contend that, provided the host language supports metaprogramming,100

specialization can be effectively realized through compile-time code generation, circumventing101

the need for invasive modifications to the language’s type system or compiler infrastructure.102

error[E0119]: conflicting implementations

of trait `Trait` for type `i32`
--> <source>:7:1

|

3 | impl<T> Trait for T {

| ------------------- first implementation here

...

7 | impl Trait for i32 {

| ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ conflicting

implementation for `i32`

Listing 2 The compilation error of Listing 1.

Proposal. In this manuscript, we103

introduce meta-monomorphizing104

specializations, a novel approach105

that leverages compile-time metapro-106

gramming to generate specialized107

versions of polymorphic functions108

and interface types, building upon109

the principles of monomorphiza-110

tion. Our central idea is to employ111

monomorphization as a foundation112

for specialization, where the com-113

piler automatically generates spe-114

cialized implementations based on user-defined directives. Metaprogramming has evolved into115

a fundamental paradigm in modern language design, as highlighted by Lilis and Savidis [56].116

trait Trait { fn f(&self); }

impl<T> Trait for T {

fn f(&self) { ... }

}

#[when(T = i32)]

impl<T> Trait for T {

fn f(&self) { ... }

}

Listing 3 Specialization solved
through meta-monomorphization.

Our approach operates specifically with the117

metaprogramming facilities (e.g., macros and code118

generation) available in the host language [56], al-119

lowing developers to define specialization logic in a120

high-level, declarative manner. Crucially, we aim121

to preserve the compilation pipeline of the host lan-122

guage, ensuring compatibility while reusing existing123

type-checking passes and optimization strategies. The124

snippet in Listing 3 illustrates how our approach re-125

solves the specialization issue through the #[when(T126

= i32)] attribute—a procedural macro (cf. §2) that127

generates the specialized implementation for the ground type i32. While the proposed ap-128

proach is fundamentally language-agnostic, we have selected the Rust programming language129

CVIT 2016

23:4 Meta-Monomorphizing Specializations

as the target for our study, given its strong emphasis on performance, safety, and modern130

metaprogramming features.131

Non-goals. Our focus is exclusively on enabling meta-monomorphic specializations. Con-132

sequently, we assume fully type-annotated programs as input, leaving type inference as a133

potential preprocessing step. While monomorphization inherently involves whole-program134

analysis and code duplication, optimizing the resulting transformation time, binary size, or135

redundancy is outside the scope of this work; however, modern optimizing compilers perform136

dead or unreachable code elimination. Improving the precision of our analysis, however,137

remains an interesting and important direction for future work. Finally, while our approach138

targets combinations of:139

first-order programs with equality bound (§3.1);140

predicate polymorphism with trait bounds (§3.2);141

polymorphic
∑

- and
∏

-type constructors (§3.3);142

lifetime polymorphism with reference types (§3.4); and143

higher-ranked polymorphism with higher-order functions (§3.5)144

It does not currently support all program classes, such as recursive polymorphic functions [38,145

11, 37, 78] or existential types [65, 54] (cf. §3.6). Instead, we provide a practical specialization146

framework that leverages existing metaprogramming without requiring compiler modifications.147

Contributions. The contributions of this work are threefold:148

We introduce the concept of meta-monomorphizing specializations, detailing its design149

principles, formalization, and implementation strategies.150

We present a metaprogramming framework, designed, developed, and extensively tested,151

that facilitates the definition and generation of specialized implementations.152

We conduct an engineering study on higher-ranked codebases to assess the practical153

implications and benefits of our method.154

Structure. The rest of this paper is organized as follows. §2 introduces Rust’s type system155

and macro facilities. §3 details our approach through progressive examples. §4 presents an156

empirical study on public Rust codebases. §5 discusses potential threats to the validity of157

our results. §6 surveys related work, and §7 concludes.158

2 The Rust Programming Language159

Rust [62] is a systems programming language designed around the principles of safety, speed,160

and concurrency. It guarantees memory safety without garbage collection, meaning that161

pure Rust programs are provably free from null pointer dereferences and unsynchronized race162

conditions at compile time [45].163

Ownership and Borrowing. Rust’s ownership system, integrated into its type system, is164

formally grounded in linear logic [33, 34] and linear types [92, 68], enforcing that each value165

has a single owner (a variable binding) at any given time [22, 12]. When the owner goes out of166

scope, the associated memory is automatically deallocated, enabling user-defined destructors167

and supporting the resource acquisition is initialization (RAII) pattern [83]. Ownership can168

be transferred (moved) or temporarily shared (borrowed) through references. Rust imposes169

a strict borrowing discipline: at any given time, a piece of data can have either multiple170

immutable borrows or a single mutable borrow, but not both simultaneously. This invariant is171

enforced through strict aliasing rules over references. Mutable references (&mut T) guarantee172

exclusive access to the underlying data, while immutable references (&T) permit shared access.173

Anonymous author(s) 23:5

These constraints, enforced by the compiler’s borrow checker, guarantee memory safety and174

prevent dangling pointers by ensuring that reference lifetimes never outlive their owners.175

To support low-level operations, Rust provides unsafe blocks, wherein the compiler’s safety176

guarantees are suspended, and the burden of avoiding undefined behavior (UB) falls upon177

the programmer. Outside these designated blocks, Rust enforces strict safety, making UB178

impossible in safe code.179

Type System. In addition to primitive types such as i32 and bool, Rust supports both180 ∑
- and

∏
-types, realized as algebraic data types (ADTs). The former are represented by181

the enum keyword, and the latter by the struct keyword. These composite types can be182

made polymorphic through generic type parameters [46], which allow for the definition of183

types and functions that operate over a variety of data types while maintaining compile-184

time type safety. Rust also features robust pattern matching, which facilitates the concise185

and expressive handling of aggregate data types by deconstructing them and matching186

against their internal structure. Pattern matching is tightly integrated with Rust’s type187

system, enabling sophisticated error handling and control flow, as exemplified by standard188

library types such as Option<T> and Result<T, E>. The type system is further enriched189

by interface types, declared using the trait keyword. Traits define shared behavior that190

concrete types can implement, supporting both static and dynamic dispatch. This mechanism191

enables abstraction over operations and facilitates code reuse while preserving strong type192

safety. A trait can be utilized in three primary forms: as a bounded type parameter via <T:193

Trait>, as an existential type via impl Trait, or as a trait object via dyn Trait. However,194

the expressiveness of the trait system leads to undecidable type checking in the general195

case. Existential polymorphism, through impl Trait, allows functions to return types that196

implement a specific trait while keeping the concrete type opaque to the caller, thereby197

enhancing abstraction and encapsulation. Another form of existential polymorphism is198

realized through &dyn Trait, which enables function parameters to accept references to any199

object that implements a trait, without requiring the concrete type to be known at compile200

time. Lifetimes are another cornerstone of Rust’s type system. The temporal validity of201

a reference is governed by its lifetime. While often elided in source code for brevity, the202

full form of a reference type—&'a T or &'a mut T—explicitly annotates the duration for203

which the borrow remains valid. A precise understanding of these lifetimes is crucial for the204

type-checking process, as they allow the compiler to guarantee that no reference outlives the205

data it points to. This property is particularly evident in the following example.206

1 fn bar() {

2 'a: {

3 let res;

4 'b: {

5 let x = 7;

6 res = &/*'b */x;

7 }

8 println!("{res}");

9 }

10 }

error[E0597]: `x` does not live long enough

--> <source>:6:19

|

5 | let x = 7;

| - binding `x` declared here

6 | res = &/*'b */x;

| ˆˆˆˆˆˆˆˆˆ borrowed value does

not live long enough

7 | }

| - `x` dropped here while still borrowed

8 | println!("{res}");

| --- borrow later used here

error: aborting due to 1 previous error

207

The compiler must raise an error because the reference res is assigned the address of x, which208

CVIT 2016

23:6 Meta-Monomorphizing Specializations

is declared in the inner scope 'b and goes out of scope (and is thus dropped) at the end209

of that block. When res is used in the 'a scope, it points to a value that no longer exists,210

leading to a dangling reference.211

Subtyping. Rust supports subtyping. In particular, lifetimes form a subtyping hierarchy212

based on their scopes. We provide a parallel between Rust’s lifetime subtyping and natural213

deduction expressed through Gentzen-style subtyping deduction rules [73]. The notation214

T <: U indicates that type T is a subtype of type U . A lifetime 'a is a subtype of another215

lifetime 'b if the scope of 'a is contained within the scope of 'b—i.e., 'a outlives 'b, denoted as216

'a: 'b (cf. L-Sub). The variance difference between shared and mutable references is at the217

heart of memory safety in Rust. Shared references are covariant over both their lifetime and218

the type they point to (cf. Ref-Cov). Mutable References, on the other hand, are invariant219

over the type they point to, while remaining covariant over their lifetime (cf. RefMut-Inv).220

Function pointers also exhibit variance properties. They are contravariant in their argument221

types and covariant in their return types (cf. Fn-Sub). Intuitively, this means that a222

function that accepts more general arguments and returns more specific results can be used223

wherever a function with more specific arguments and more general results is expected.224

Rust supports smart pointers, such as Box<T> (heap allocation), and containers, such as225

Vec<T> (dynamic arrays). Both own their data and do not allow aliasing (cf. BoxVec-Sub).226

The interior mutability provided by types like Cell<T> and UnsafeCell<T> allows for muta-227

tion through shared references. They are invariant over the type they contain to prevent228

unsoundness (cf. CellUns-Inv). Finally, raw pointers (*const T and *mut T) are similar to229

C/C++ pointers and do not enforce any ownership or borrowing rules. They follow the same230

variance rules as references (cf. PtrConst-Cov and PtrMut-Inv).231

'a: 'b

'a <: 'b L-Sub

232

'a <: 'b T <: U

&'a T <: &'b U
Ref-Cov

233

'a <: 'b T = U

&'a mut T <: &'b mut U
RefMut-Inv

234

T1 <: T2 U1 <: U2

fn(T2) -> U1 <: fn(T1) ->U2
Fn-Sub

235

T <: U F ∈ {Box, Vec}
F<T> <: F<U>

BoxVec-Sub

236

T = U F ∈ {Cell, UnsafeCell}
F<T> <: F<U>

CellUns-Inv

237

T <: U

*const T <: *const U
PtrConst-Cov

238

T = U

*mut T <: *mut U
PtrMut-Inv

239

240

Higher-Rank Polymorphism. Rust does not merely support rank-1 polymorphism through241

generics; it also embraces higher-rank polymorphism via higher-ranked trait bounds (HRTBs) [50,242

87]. HRTBs allow functions to be generic over lifetimes that are not known until the function243

Anonymous author(s) 23:7

is called, enabling more flexible and reusable abstractions. This is achieved through the244

for<'a> syntax, which specifies that a type or function is valid for all choices of lifetime 'a245

(i.e., ∀'a). As an example, consider the following apply function, which takes a reference to246

an i32 and a closure f that can accept a reference with any lifetime:247

fn apply<F, T>(p: &i32, f: F) -> T where F: for<'a> Fn(&'a i32) -> T { f(p) }248

This function can be called with closures that accept references with different lifetimes,249

demonstrating the power of higher-rank polymorphism in Rust.250

Macro System. Rust’s macro system allows for metaprogramming by enabling code gen-251

eration and transformation at compile time. There are two main types of macros in Rust:252

declarative macros (using macro_rules!) and procedural macros. The former operate through253

pattern matching over token trees, allowing developers to define reusable code snippets that254

can be invoked with different arguments. While reminiscent of Lisp macros in spirit [63],255

Rust’s declarative macros enforce hygiene [52, 39, 24]: macro-generated identifiers cannot256

inadvertently capture variables or introduce unintended bindings. The latter, procedural257

macros, operate on the abstract syntax tree (AST) of the code, allowing for more complex258

transformations and code generation. They come in three forms: function-like macros,259

custom derive macros, and attribute-like macros. Function-like macros resemble functions260

but operate on token streams, enabling developers to create domain-specific languages [88]261

or perform complex code manipulations [21]. Custom derive macros are widely used to262

automatically implement traits for user-defined types, such as Clone or Debug. Attribute-like263

macros allow for annotating items with custom attributes that can modify their behavior or264

generate additional code; the #[when(...)] attribute macro highlighted in §1 is an example265

of such a use.266

3 Meta-Monomorphizing Specializations by Examples267

This section elucidates our approach through a progressive sequence of examples, each268

designed to reveal a distinct layer of the meta-monomorphization process. Each stage269

builds upon the preceding one, with all established properties and assumptions persisting270

throughout. Our objective is to provide a high-level yet compiler-accurate exposition of the271

core mechanics. A discussion of limitations is deferred to §3.6. In the following, the compiler272

refers in particular to the macro expansion phase of the Rust compiler.273

3.1 First-Order Programs with Equality Bounds274

We begin by considering the program in Listing 4. This example extends the motivating275

scenario from §1 by parameterizing trait Trait over a type T and augmenting its method f276

to accept an argument of this type.277
struct ZST;

trait Trait<T> { fn f(&self, a: T); }

#[when(T = i32)]

impl<T> Trait<T> for ZST { fn f(&self, a: T) {} }

impl<T> Trait<T> for ZST { fn f(&self, a: T) {} }

fn main() { let s = ZST;

spec! { s.f("s"); ZST; [_] }

spec! { s.f(7); ZST; [i32] } }

Listing 4 A first-order program with trait specializations.

In this configuration, two dis-278

tinct implementations of Trait<T>279

are provided for the type ZST (a280

zero-sized type). The first is a281

specialized variant, constrained by282

a formal equality specialization283

bound requiring T = i32. The284

second is a generic fallback for285

all other types. Within the main286

function, the method f is invoked287

CVIT 2016

23:8 Meta-Monomorphizing Specializations

twice on a ZST instance, first with a &str argument and subsequently with an i32, necessi-288

tating dispatch to the appropriate implementation in each case. Our function-like macro,289

spec!, serves as a crucial marker, enabling our meta-monomorphization procedure to identify290

specialized call sites. This macro accepts three arguments: the method call expression,291

the receiver type (e.g., ZST), and a list of actual specialization parameter bounds. These292

bounds consist of either concrete types (e.g., [i32]) or a wildcard [_] to signify the absence293

of specialization.8 Henceforth, we will use the abbreviation SBs for specialization bounds,294

rendered in boldface (e.g., B1) to distinguish them from type parameters (e.g., T1). For295

clarity of presentation, we assume all type parameters are uniquely named.296

The meta-monomorphization of specializations in first-order programs proceeds according297

to the following sequence of compiler transformations:298

1. Meta-Monomorphizing Traits. For each #[when(...)] specialization attribute, the com-299

piler synthesizes a distinctly named meta-monomorphized trait definition. This new trait300

is a specialized version of the original, tailored to a specific formal SB. Let T be a trait301

with n type parameters T1, . . . , Tn, and let B1 be a ground type serving as a formal SB302

for the type parameter T1. For every specialization implementation of the form:303

#[when(T1 = B1)]

impl<T1, . . . , Tn> T <T1, . . . , Tn> for S {

fn f(&self, a1: T1, . . ., an: Tn) { . . . } }

the compiler generates a meta-monomorphized trait definition:304

trait T [B1]<T2, . . . , Tn> {

fn f(&self, a1: B1, a2: T2, . . ., an: Tn); }

Here, the new trait name T [B1] indicates that the first formal parameter is now bound to305

the ground type B1, while the remaining parameters T2, . . . , Tn are preserved as generic.306

This procedure is applied systematically to all associated items (e.g., methods, type307

aliases) within the trait. The resulting set of all such generated traits, augmented with308

the original default trait, is denoted as M = {T [B1]} ∪ {T }.9309

2. Specialization Extraction. For each specialization, the compiler extracts its body to310

generate a corresponding implementation of the newly created meta-monomorphized trait.311

Assuming T [B1] ∈ M, the original implementation is transformed into:312

impl<T2, . . . , Tn> T [B1]<T2, . . . , Tn> for S {

fn f(&self, a1: B1, a2: T2, . . ., an: Tn) { . . . } }

Crucially, the type parameter T1 is replaced by the concrete type B1 in the method313

signature. This process is repeated for all associated items. The set of all generated314

implementations for a concrete type S is denoted I = {(S, T [B1])}. If multiple specializa-315

tions declare overlapping SBs, the system generates distinct meta-monomorphized traits316

and implementations for each, deferring overlap resolution to the subsequent stage.317

3. Overlapping Instances Checking. To guarantee deterministic dispatch, as established in318

§1, specialization implementations must not have overlapping formal SBs. This property319

is enforced through a static analysis pass that checks for overlapping instances, a problem320

8While these bounds could be inferred via compile-time reflection, such mechanisms are orthogonal to
the core contribution and thus beyond the scope of this paper (cf. Non-goals in §1).

9Generating traits for all declared specializations might appear suboptimal if some are unused. However,
the Rust compiler’s dead-code elimination pass [51] effectively removes unreferenced trait definitions. An
alternative, demand-driven strategy that generates traits only for utilized specializations is a viable area
for future work.

Anonymous author(s) 23:9

known to be undecidable in its general form [5]. For any pair of implementations in I for321

the same type S but different meta-monomorphized traits (T [B1] and T [C1]), the compiler322

checks for SB overlap. Formally, it determines whether a unifying substitution σ exists323

such that σ(B1) ≡ σ(C1). A unifier σ = {T 7→ U} exists if applying it to both B1 and324

C1 yields an identical type. Our system permits overlaps only when one specialization is325

strictly more specific than the other (further details are provided in §3.7). This check not326

only flags ambiguous SBs with a compiler error but also ensures that actual SBs at any327

call site will match at most one specialization.328

4. Specialization Bounds Coherence Checking. To ensure coherence at each call site marked329

with the spec! macro, the compiler must select the appropriate specialization. This is330

achieved by matching the actual SBs from the call site against the formal SBs of all331

implementations in I. Given a call site of the form:332

spec! { s.f(a1, a2, . . . , an); S; [B1]; }

where s: S is the receiver, a1, . . . , an are the arguments, and [B1] is the actual SB,333

the compiler searches for a unique implementation (S, T [B1]) ∈ I whose formal SBs are334

equivalent to the actual SBs. The preceding overlap check guarantees that no more than335

one such implementation can exist for a well-formed program. In first-order programs,336

this matching is straightforward, as both formal and actual SBs are ground types. If a337

matching specialization T B1 is found, it is selected for the final transformation; otherwise,338

the call site defaults to the non-specialized trait T .339

5. Call Site Specialization. The final stage is to rewrite each specialized call site to invoke340

the method from the uniquely matched meta-monomorphized trait. Given the call site341

above and the matched implementation (S, T [B1]) ∈ I, the compiler rewrites the call as:342

<S as T [B1]>::f(&s, a1, a2, . . . , an);

This rewrite employs Rust’s fully qualified syntax to explicitly name the receiver type343

S and the meta-monomorphized trait T [B1], thereby ensuring dispatch to the correct344

specialized implementation. Non-specialized call sites are similarly rewritten to invoke345

the default trait T : <S as T >::f(&s, a1, . . . , an);346

Following these transformations, the program is internally rewritten during the compiler’s347

macro expansion phase to employ standard, non-specialized trait implementations. This348

transformed program is then lowered through the conventional compilation pipeline, which349

includes type-checking the HIR (High-level Intermediate Representation), borrow-checking350

the MIR (Mid-level Intermediate Representation), monomorphizing generics, and finally code351

generation (e.g., to LLVM IR [53]). In the case of the program in Listing 4, after applying352

our meta-monomorphization procedure, the transformed program would look as follows:353

struct ZST;

trait Trait<T> { fn f(&self, a: T); }

trait Trait_i32 { fn f(&self, a: i32); }

impl<T> Trait<T> for ZST { fn f(&self, a: T) {} }

impl Trait_i32 for ZST { fn f(&self, a: i32) {} }

fn main() {

let s = ZST;

<ZST as Trait<&str>>::f(&s, "s");

<ZST as Trait_i32>::f(&s, 42); }

354

3.2 Predicate Polymorphism with Trait Bounds355

To illustrate predicate polymorphism, we adapt the program from Listing 4. The formal356

SB is changed from a simple equality T = i32 to a compound predicate, any(T = i32, T:357

CVIT 2016

23:10 Meta-Monomorphizing Specializations

struct ZST;

trait Trait<T> { fn f(&self, a: T); }

#[when(any(T = i32, T: Clone))]

impl<T> Trait<T> for ZST { fn f(&self, a: T) {} }

impl<T> Trait<T> for ZST { fn f(&self, a: T) {} }

fn main() { let s = ZST;

spec! { s.f("s"); ZST; [_] }

spec! { s.f(vec![1]);

ZST; [Vec<i32>];

Vec<i32>: Clone } }

1 Predicate polymorphism and trait specializations.

Clone), which is satisfied either by the ground type i32 or by any type implementing the358

trait Clone (cf. Listing 1). Consequently, the spec! macro is extended to accept the trait359

bounds required to satisfy the actual SBs at a given call site (e.g., Vec<i32>: Clone). The360

dispatch for the first call to f remains unaltered, whereas the second call now resolves to the361

specialized implementation, since Vec<i32> implements Clone.362

Meta-monomorphizing specializations under predicate polymorphism proceeds analogously363

to the first-order case, with several key adaptations:364

1. Let P̂ (P1, . . . , Px) be a recursive predicate formula where each clause Pi is either (i) an365

equality SB Ti = Bi or a trait SB Ti: Ti, or (ii) a nested predicate from the set {any, all,366

not} over such atoms. Without loss of generality, we assume P̂ has been canonicalized367

into Disjunctive Normal Form (DNF)10—i.e., it is expressed as any(P1, . . . , Px). For each368

specialization implementation governed by such a predicate:369

#[when(P̂ (P1, . . . , Px))]
impl<T1, . . . , Tn> T <T1, . . . , Tn> for S {

fn f(&self, a1: T1, . . ., an: Tn) { . . . } }

the compiler generates, for each disjunct Pi, a distinctly named meta-monomorphized370

trait definition:371

trait T [Pi]<Tk+1, . . . , Tk+1+l, Tk+l+2, . . . , Tn> {

fn f(&self, a1: B1, . . ., ak: Bk, ❶ // Equality Bounded in T
akp1: Tk+1, . . ., akp1pl: Tk+1+l, ❷ // Trait Bounded in T
akplp2: Tk+l+2, . . ., an: Tn); } ❸ // Generic in T

where the disjunct Pi is composed of k formal equality SBs T1 = B1, . . . , Tk = Bk372

(cf. ❶), l formal trait SBs Tk+1: Tk+1, . . . , Tk+1+l: Tk+1+l (cf. ❷), and the remaining373

generic type parameters Tk+l+2, . . . , Tn (cf. ❸). The trait SBs are preserved as generic374

type parameters in the synthesized trait. The set M̂ thus extends M to include meta-375

monomorphized traits for each predicate disjunct Pi.376

2. For each specialization, the compiler generates a corresponding implementation for every377

associated meta-monomorphized trait in M̂. The previously generic trait SB is now378

concretized by substituting the corresponding type parameters with their bounds within379

the impl block.380

impl<Tk+1: Tk+1, . . ., Tk+1+l: Tk+1+l, ❷

Tk+l+2, . . ., Tn ❸> T [Pi]<Tk+1, . . . , Tn> for S {

fn f(&self, a1: B1, . . ., ak: Bk, ❶

akp1: Tk+1, . . ., an: Tn ❷ ❸) { . . . } }

It is possible for the same type parameter to appear in both equality and trait SBs381

10The canonicalization process for predicate formulas is detailed in §3.7.

Anonymous author(s) 23:11

within a disjunct Pi (e.g., all(T = Vec<i32>, T: Clone)). In such cases, if the equality382

SB implies the trait SB (since Vec<i32> implements Clone), the trait SB can be safely383

elided from the parameter list. The set Î = I ∪ {(S, T [Pi])} extends I with these newly384

generated implementations.385

3. In contrast to first-order programs, predicate-based specializations introduce multiple386

sources of potential overlap. Formal SBs within a single disjunct Pi may conflict, as387

can different disjuncts Pi and Pj of the same predicate P̂ . The compiler first checks for388

intra-disjunct consistency, ensuring no two atoms for the same type parameter T are389

contradictory (e.g., T = i32 and T: Debug are compatible, whereas T = i32 and T = bool390

are not). Second, for every pair of implementations in Î for the same type S but with391

different meta-monomorphized traits T [Pi] and T [Qj], it checks for a unifying substitution392

σ where σ(Pi) ≡ σ(Qj). Finally, as in the first-order case, inter-trait overlaps are checked393

between all pairs in M̂ by comparing their respective formal SBs.394

4. Coherence checking is extended to accommodate predicate SBs. The spec! macro becomes395

variadic, accepting an arbitrary number of trait bounds as actual SBs. Given a call site396

of the form:397

spec! { s.f(a1, . . . , ak, ak+1, . . . , ak+1+l, ak+l+2, . . . , an);

S; [B1, . . . , Bk]; Tk+1: Tk+1, . . ., Tk+1+l: Tk+1+l }

the compiler must find a unique implementation (S, T [Pi]) ∈ Î whose formal SBs Pi match398

the actual SBs. The matching logic must now handle ground type equivalence, trait bound399

satisfaction, and predicate unification. Actual equality SBs may themselves be generic400

(e.g., Vec<U>). In such cases, the matching procedure must ensure that type parameters401

like U are instantiated consistently across all SBs at the call site. A key distinction from402

the first-order case is that multiple disjuncts Pi from the same predicate P̂ may match403

the actual SBs. The compiler must therefore select the most specific implementation404

among the candidates (cf. §3.7).405

5. This step remains functionally identical to the first-order case, with the distinction that406

the rewritten call site may now invoke a method from a meta-monomorphized trait T [Pi]
407

corresponding to a predicate formula Pi.408

use std::marker::PhantomData;

struct ZST<U>(PhantomData<U>);

trait Trait<T> { fn f(&self, a: T); }

#[when(all(any(T = i32, T: Clone), U = bool))]

impl<T,U> Trait<T> for ZST<U> {fn f(&self, a:T){}}

impl<T,U> Trait<T> for ZST<U> {fn f(&self, a:T){}}

fn main() {

let s = ZST::<bool>(PhantomData);

let t = ZST::<u8>(PhantomData);

spec!{s.f(7); ZST<bool>; [i32]}

spec!{t.f(7); ZST<u8>; [i32]}}

2 A program with polymorphic type constructors and nested predicate specializations. The
PhantomData is used to indicate that ZST is generic over U without actually storing a value of type U.

3.3 Polymorphic ∑- and ∏-type Constructors409

As noted in §2, Rust supports polymorphic
∑

- and
∏

-type constructors. To demonstrate410

how our approach accommodates such constructors, we modify the program in Listing 1.411

A type parameter U is added to the ZST struct, and the formal SB is refined to a nested412

predicate: all(any(T = i32, T: Clone), U = bool). This predicate matches the previous413

conditions on T while also requiring that U be bound to bool (cf. Listing 2). The spec!414

macro must now receive the receiver type with its full type arguments (e.g., ZST<bool>).415

CVIT 2016

23:12 Meta-Monomorphizing Specializations

Consequently, only the first call to f dispatches to the specialized implementation, as the416

receiver type ZST<u8> in the second call fails to satisfy the formal SB U = bool.417

The meta-monomorphization procedure requires further adaptation to handle type pa-418

rameters from the implementing type S:11
419

1. When synthesizing meta-monomorphized traits, type parameters from the implementing420

type are incorporated only if they also appear in the trait instantiation. Let P̃ (P1, . . . , Px)421

be a DNF predicate formula that may now reference type parameters from the imple-422

menting type S. Consider a specialization of the form:423

#[when(P̃ (P1, . . . , Px))]
impl<T1, . . . ,Tm︸ ︷︷ ︸

❶ ❷ ❸

, Tm+1, . . . ,Tm+1+o︸ ︷︷ ︸
❹ ❺ ❻

, Tm+o+2, . . . ,Tn︸ ︷︷ ︸
❼ ❽ ❾

> T <T1, . . . , Tm+1+o︸ ︷︷ ︸
❶,...,❻

>

for S<Tm+1, . . . , Tn︸ ︷︷ ︸
❹,...,❾

> {

fn f(&self, a1: T1, . . ., ap1po: Tm+1+o) { . . . } }

where ❹, ❺, and ❻ denote type parameters shared between the trait and the implementing424

type S. For each disjunct Pi, the compiler generates a meta-monomorphized trait:425

trait T [Pi]<Tk+1, . . . ,Tm︸ ︷︷ ︸
❷ ❸

, Tm+r+2, . . . ,Tm+1+o︸ ︷︷ ︸
❺ ❻

> {

fn f(&self, a1: B1, . . ., ak: Bk, ❶ // Equality Bounded (EB) in T
akp1: Tk+1, . . ., akp1pl: Tk+1+l, ❷ // Trait Bounded (TB) in T
akplp2: Tk+l+2, . . ., am: Tm, ❸ // Generic (Gen) in T
amp1: Bm+1, . . ., amp1pr: Bm+1+r, ❹ // EB in S & T
amprp2: Tm+r+2, . . ., amprp2ps: Tm+r+2+s, ❺ // TB in S & T
amprpsp3: Tm+r+s+3, . . ., amp1po: Tm+1+o); } ❻ // Gen in S & T

where, in addition to the categories ❶, ❷, and ❸, we now have: r formal equality SBs426

(cf. ❹), s formal trait SBs (cf. ❺), and the remaining generic type parameters (cf. ❻) that427

originate from S and also appear in the trait instantiation. Type parameters exclusive428

to S are handled in the next step. The set M̃ = M̂ ∪ {T [Pi]} extends M̂ with these new429

traits.430

2. To generate implementations, we must now also account for type parameters belonging431

solely to the implementing type S. Let the predicate Pi of a trait T [Pi] ∈ M̃ contain:432

❼ t formal equality SBs Tm+o+2 = Bm+o+2, . . . , Tm+o+2+t = Bm+o+2+t,433

❽ u formal trait SBs Tm+o+t+3: Tm+o+t+3, . . . , Tm+o+t+3+u: Tm+o+t+3+u, and434

❾ remaining generic type parameters Tm+o+t+u+4, . . . , Tn435

that are part of S but do not appear in the trait instantiation. A corresponding imple-436

mentation is generated for each meta-monomorphized trait in M̃ as follows:437

impl<Tk+1: Tk+1, . . ., Tk+1+l: Tk+1+l, ❷ // Trait Bounded in T
Tk+l+2, . . ., Tm, ❸ // Generic in T
Tm+r+2: Tm+r+2, . . ., Tm+r+2+s: Tm+r+2+s, ❺ // TB in S & T
Tm+r+s+3, . . ., Tm+1+o ❻ // Gen in S & T
Tm+o+t+3, . . . ,Tn︸ ︷︷ ︸

❽ ❾

> T [Pi]<Tk+1, . . . ,Tm︸ ︷︷ ︸
❷ ❸

, Tm+r+2, . . . ,Tm+1+o︸ ︷︷ ︸
❺ ❻

>

for S[Pi]<Bm+1, . . . ,Bm+1+r︸ ︷︷ ︸
❹

, Tm+r+2, . . . ,Tm+1+o︸ ︷︷ ︸
❺ ❻

,

11The procedure is identical for both
∑

- and
∏

-type constructors; hence, we do not distinguish
between them.

Anonymous author(s) 23:13

Bm+o+2, . . . ,Bm+o+2+t︸ ︷︷ ︸
❼

, Tm+o+t+3, . . . ,Tn︸ ︷︷ ︸
❽ ❾

> {

fn f(&self, a1: B1, . . ., ak: Bk, ❶

akp1: Tk+1, . . ., am: Tm, ❷ ❸

amp1: Bm+1, . . ., amp1pr: Bm+1+r, ❹

amprp2: Tm+r+2, . . ., amp1po: Tm+1+o ❺ ❻) { . . . } }

Depending on the structure of P̃ , multiple implementations may share the same equality438

SBs from S[Pi] (cf. ❼) while differing in trait SBs or generic parameters (cf. ❺, ❻). For439

example, in Listing 2, specializations for all(T = i32, U = bool) and all(T: Clone, U440

= bool) share the equality SB U = bool but differ in the SB for T. These combinatorial441

possibilities introduce complexity into the subsequent coherence checks. The set Ĩ =442

Î ∪ {(S[Pi], T [Pi])} extends Î with all such generated implementations.443

3. The overlap checking procedure is extended to reason about type parameters from the444

implementing type S[Pi]. For each pair of implementations in Ĩ, the process is twofold:445

With the implementing types S[Pi] and S[Qj] fixed, let δ = Pi

S
∩ Qj ̸= ∅ be the set of446

common SBs with respect to parameters from S. We check if a unifying substitution σ447

exists such that σ(Pi) ≡ σ(Qj) for the remaining SBs Pi \ δ and Qj \ δ.448

With the meta-monomorphized traits T [Pi] and T [Qj] fixed, let γ = Pi

T
∩ Qj ̸= ∅ be449

the set of common SBs with respect to parameters from T . We check if a unifying450

substitution σ exists such that σ(Pi) ≡ σ(Qj) for the remaining SBs Pi \ γ and Qj \ γ.451

In essence, both checks fix the common SBs and verify if the remaining, disjoint sets of452

SBs can be unified, indicating an overlap.453

4. The coherence check for specialization bounds must now incorporate actual SBs from the454

implementing type S at each call site. Given a well-formed call site:455

spec! { s.f(a1, . . . , ak︸ ︷︷ ︸
❶

, ak+1, . . . , ak+1+l︸ ︷︷ ︸
❷

, ak+l+2, . . . , am︸ ︷︷ ︸
❸

, am+1, . . . am+1+o︸ ︷︷ ︸
❹ ❺ ❻

);

S[Pi]<Bm+1, . . . , Bn︸ ︷︷ ︸
❹ ❺ ❻ ❼ ❽ ❾

>; [B1, . . . , Bk︸ ︷︷ ︸
❶

, Bm+1, . . . , Bm+1+o︸ ︷︷ ︸
❹ ❺ ❻

];

Tk+1: Tk+1, . . ., Tk+1+l: Tk+1+l; ❷

Tm+r+2: Tm+r+2, . . ., Tm+r+2+s: Tm+r+2+s ❺ }

the compiler must identify a unique implementation (S[Pi], T [Pi]) ∈ Ĩ whose formal SBs456

Pi match the actual SBs. All type parameters of S must be provided as actual equality457

SBs, ensuring the implementing type is fully instantiated at the call site (as Rust lacks458

higher-rank polymorphism over type constructors). An effective resolution strategy is459

to first filter candidate implementations based on the equality SBs of S[Pi], then further460

refine the selection by matching the trait SBs from T [Pi].461

5. The call site specialization step must now furnish the receiver type with the appropriate462

type arguments (e.g., ZST<bool>). Given the matched implementation (S[Pi], T [Pi]) ∈ Ĩ,463

the compiler rewrites the call to invoke the method from the meta-monomorphized trait,464

providing the necessary type arguments for S[Pi].465

<S[Pi]<Bm+1, . . . , Bm+1+o>

as T [Pi]<Tk+1, . . . , Tm, Tm+r+2, . . . , Tm+1+o>>::f(&s, . . .);

3.4 Lifetime Polymorphism with Reference Types466

Unsoundness. As noted in §1, the initial #![feature(specialization)] gate in Rust was467

plagued by unsoundness. The core issue was that specialized implementations could inadver-468

CVIT 2016

23:14 Meta-Monomorphizing Specializations

struct ZST;

trait Trait<T, U> { fn f(&self, p: T, u: U); }

const SEVEN: &'static i32 = &7;

#[when(all(T = &str, T: 'a, U = &'a i32))]

impl<'a, T, U> Trait<T, U> for ZST { fn f(&self, p: T, u: U) {} }

#[when(all(T = &str, T: 'a, U = &'b i32))]

impl<'a, 'b, T, U> Trait<T, U> for ZST { fn f(&self, p: T, u: U) {} }

fn main() { let zst = ZST;

let p: &'static str = "foo";

spec! { zst.f(p, SEVEN); ZST; [&'static str, &'static i32] }

spec! { zst.f(p, &7); ZST; [&'static str, &'b i32] } }

3 A program with lifetime polymorphism and trait specializations.

tently violate expected lifetime constraints, leading to dangling references and other memory469

safety vulnerabilities [60]. This problem arises because lifetimes are erased before code470

generation (specifically, during the MIR-to-LLVM IR lowering), preventing the specialized471

implementation from being correctly monomorphized with respect to lifetime parameters. In472

an attempt to mitigate this, Matsakis et al. [61] proposed a more restricted form of specializa-473

tion, #![feature(min_specialization)], which unfortunately introduced breaking changes474

for stable Rust. The most robust solution—retaining lifetime information throughout the475

compilation pipeline—would necessitate a prohibitive “high engineering cost” and significant476

architectural changes to the compiler [90].477

Our approach addresses this challenge by elevating lifetimes to first-class specialization478

parameters.479

Example. To illustrate, we adapt the program in Listing 2. The trait Trait<T> becomes480

generic over two types, T and U; ZST is reverted to a monomorphic struct; and a constant481

SEVEN of type &'static i32 is introduced (cf. Listing 3). The first specialization is governed482

by the formal SB all(T = &str, T: 'a, U = &'a i32),12 which constrains T and U to be483

references sharing the same lifetime 'a. The second specialization, all(T = &str, T: 'a,484

U = &'b i32),13 constrains them to have distinct lifetimes. In main, the first call, zst.f(p,485

SEVEN), dispatches to the first specialization because both arguments share the 'static486

lifetime. The second call, zst.f(p, &7), dispatches to the second specialization, as p has a487

'static lifetime while the local reference &7 has a shorter, anonymous lifetime.488

Overview. As the procedure for handling lifetime polymorphism is conceptually equivalent to489

the predicate polymorphism case (§3.2), we provide a condensed overview. The crucial insight490

is that lifetimes can be treated as first-class specialization parameters. Lifetime constraints491

(e.g., 'a: 'b, 'a = 'static) are incorporated as atomic predicates within specialization492

bounds, allowing them to be canonicalized into DNF. The meta-monomorphization procedure493

generates distinct trait implementations for different lifetime configurations, using the same494

overlap and coherence verification mechanisms. For instance, the formal SB all(T = &str,495

T: 'a, U = &'a i32) yields a meta-monomorphized trait T [T=&str,T:'a,U=&'a i32] that496

12The syntaxes all(T = &str, T: 'a) and T = &'a str are semantically equivalent and inter-
changeable.

13Alternatively, one could use the predicate all(T = &str, T: 'a, U = &i32, not(U: 'a)) to
express that U has a lifetime distinct from 'a without introducing a new lifetime parameter 'b.

Anonymous author(s) 23:15

preserves the shared lifetime relationship. Similarly, the SB all(T = &str, T: 'a, U = &'b497

i32) generates T [T=&str,T:'a,U=&'b i32] for cases with distinct lifetimes.498

Specialization Bounds Coherence Checking. When resolving method calls involving refer-499

ences, our approach extends SB matching to include lifetime constraints, ensuring coherent500

dispatch. The resolver must unify type and lifetime parameters simultaneously. For the call501

zst.f(p, SEVEN), where p: &'static str and SEVEN: &'static i32, the resolver matches502

the first specialization’s SB, all(T = &str, T: 'a, U = &'a i32), by unifying both lifetimes503

to 'static. This produces the substitution [T 7→ &'static str, U 7→ &'static i32, 'a 7→504

'static].For the second call, zst.f(p, &7), the local reference &7 introduces a fresh, shorter505

lifetime. The resolver then matches the second specialization’s SB, all(T = &str, T: 'a, U506

= &'b i32), yielding the substitution [T 7→ &'static str, U 7→ &'local i32, 'a 7→ 'static,507

'b 7→ 'local].508

Preserving Lifetime Information. Unlike the standard Rust compiler, which erases lifetimes509

prior to specialization, our meta-monomorphization approach preserves lifetime information510

throughout the compilation pipeline. This guarantees sound specialization by ensuring each511

monomorphized instance maintains correct lifetime relationships. The generated implemen-512

tations retain their lifetime parameters, allowing the borrow checker to verify memory safety513

at the monomorphized level. For instance, after applying our procedure to Listing 3, the514

transformed program contains the following specialized traits and implementations:515

struct ZST;

trait Trait<T, U> { fn f(&self, p: T, u: U); }

const SEVEN: &'static i32 = &7;

trait Trait_eq<'a> { fn f(&self, p: &'a str, u: &'a i32); }

trait Trait_noteq<'a, 'b> { fn f(&self, p: &'a str, u: &'b i32); }

impl<'a> Trait_eq<'a> for ZST { fn f(&self, p: &'a str, u: &'a i32) {} }

impl<'a, 'b> Trait_noteq<'a, 'b> for ZST { fn f(&self, p: &'a str, u: &'b i32) {} }

fn main() {

let zst = ZST; let p: &'static str = "foo";

<ZST as Trait_eq<'static>>::f(&zst, p, SEVEN);

<ZST as Trait_noteq<'static, '_>>::f(&zst, p, &7); }
516

This design directly addresses the unsoundness concerns of the original specialization feature517

by maintaining lifetime precision during code generation, thereby ensuring that specialized518

implementations cannot violate memory safety invariants.519

3.5 Higher-Ranked Polymorphism with Higher-Order Functions520

As noted in §2, Rust supports higher-ranked polymorphism via Higher-Ranked Trait Bounds521

(HRTBs). HRTBs permit the definition of function types that are polymorphic over lifetime522

parameters, a feature essential for accepting higher-order functions that must operate on523

references of any lifetime. This capability is particularly valuable for callback patterns and524

other functional programming constructs where a closure’s definition should not unduly525

constrain the lifetimes of its arguments. However, the interaction between HRTBs and526

trait specialization remains unexplored in existing Rust implementations, largely due to the527

aforementioned soundness issues.528

Example. Building on the lifetime polymorphism example, Listing 4 demonstrates that our529

compilation strategy extends naturally to function types universally quantified over lifetimes.530

The trait Trait<T, U, V> now ranges over three type parameters. The key specialization531

CVIT 2016

23:16 Meta-Monomorphizing Specializations

struct ZST;

trait Trait<T, U, V> { fn f(&self, p: T, u: U) -> V; }

const SEVEN: &'static i32 = &7;

#[when(all(T = &str, T: 'b, U = for<'a> fn(T, &'a i32) -> V))]

impl<'b, T, U, V> Trait<T, U, V> for ZST {

fn f(&self, p: T, u: U) -> V { u(p, SEVEN) }

}

impl<T, U, V: Default> Trait<T, U, V> for ZST {

fn f(&self, p: T, u: U) -> V { V::default() }

}

fn main() { let zst = ZST;

let p: &str = "foo";

let r: u32 = spec! {

zst.f(p, |s: &str, n: &i32| { s.len() as u32 + *n as u32 }); ZST;

[&str, for<'a> fn(&str, &'a i32) -> u32]

};

let r2: i32 = spec! { zst.f(p, 2); ZST; [&str, i32] }; }

4 A program with higher-ranked polymorphism and trait specializations.

employs the formal SB all(T = &str, T: 'b, U = for<'a> fn(T, &'a i32) -> V), where532

the for<'a> quantifier mandates that the function argument U be polymorphic over any533

lifetime 'a. This ensures U can accept references with any lifetime, not just a specific one. A534

fallback implementation provides a default behavior for cases that do not match this HRTB535

specialization.536

In the main function, the first call passes a closure that conforms to the HRTB specification.537

This closure can accept an &i32 reference with any lifetime, including the 'static lifetime of538

SEVEN. The second call passes an integer instead of a function, causing dispatch to resolve to539

the fallback implementation.540

Overview. Handling HRTBs requires significant modifications to the predicate polymorphism541

framework (§3.2), particularly with respect to representing and resolving higher-ranked542

constraints. Our approach treats higher-ranked function types as specialized type constraints.543

The crucial insight is that HRTB constraints can be encoded as universal quantifications544

over lifetime parameters within specialization bounds. When a specialization bound contains545

a for<'a> quantifier, our approach generates trait implementations that preserve this higher-546

ranked nature. The formal SB all(T = &str, T: 'b, U = for<'a> fn(T, &'a i32) -> V)547

results in a meta-monomorphized trait that maintains the universal quantification over 'a548

while binding other lifetime relationships.549

Specialization Bounds Coherence Checking. Resolving trait method calls with HRTBs550

requires extending our SB matching algorithm to handle higher-ranked constraints. When551

the resolver encounters a for<'a> quantifier, it must verify that the provided function552

argument satisfies the constraint for all possible lifetime instantiations. For the call zst.f(p,553

|s: &str, n: &i32| ...), the resolver must confirm that the closure type fn(&str, &i32) ->554

u32 is a subtype of for<'a> fn(&'b str, &'a i32) -> u32. This check succeeds because the555

closure’s parameter types do not impose specific lifetime constraints. The resolver produces556

a substitution [T 7→ &'b str, U 7→ for<'a> fn(&'b str, &'a i32) -> u32, V 7→ u32, 'b 7→557

'static], preserving the higher-ranked nature of U.558

Anonymous author(s) 23:17

Preserving Higher-Ranked Information. Unlike traditional compilation approaches that559

might erase or simplify higher-ranked types during monomorphization, our meta-monomor-560

phization strategy preserves the universal quantification throughout the compilation pipeline.561

This is essential for maintaining the semantic guarantees of HRTBs, ensuring that specialized562

implementations can correctly handle function arguments with the required polymorphic563

behavior. This approach ensures that the higher-ranked polymorphic nature of function564

arguments is maintained, while enabling precise specialization dispatch based on the structure565

of the provided closures or function pointers.566

3.6 Limitations567

Certain classes of programs do not benefit from this approach, particularly those relying on568

dynamic dispatch or complex type inference.569

Existential Polymorphism. As introduced in §1, existential types in Rust are realized via570

the impl Trait or &dyn Trait syntax. Our approach does not currently support specialized571

traits in existential type positions. This limitation stems from a fundamental conflict:572

existential types conceal concrete type information, whereas our meta-monomorphization573

strategy depends upon it. When a function returns impl Trait or accepts &dyn Trait574

involving a specialized trait, our static, call-site-based approach cannot determine which575

specialized variant to use because the concrete type is unknown. For impl Trait return576

types, specialization would need to be resolved at the implementation site, but our spec!577

macro demands bounds at the call site. For &dyn Trait, the vtable-based dynamic dispatch578

mechanism is incompatible with our static resolution. Supporting this feature would require579

a hybrid static-dynamic dispatch mechanism or a method for embedding specialization580

information within existential types, both of which are interesting directions for future work.581

Polymorphic Recursion. Polymorphic recursion, wherein a function calls itself with different582

type parameters, poses a challenge to our current approach. While Rust supports limited forms583

of this via trait objects (Box<dyn Trait>), our meta-monomorphization strategy struggles584

with recursive specializations where bounds change across calls. The core issue is that our585

approach generates a distinct trait implementation for each unique set of specialization586

bounds. Polymorphic recursion could require an unbounded number of such instantiations587

within a single execution path. For instance, a recursive function on a nested data structure588

might require progressively more specific type constraints at each level of recursion, leading589

to an infinite generation requirement. Addressing this would demand techniques for handling590

recursive specialization patterns, such as lazy trait generation or cycle detection in the591

specialization dependency graph. We leave this as an important area for future research.592

3.7 Implementation Details593

We now provide additional details regarding the implementation of our approach, which has594

been validated in a Rust software library.595

Canonicalization. A critical component of our framework is the canonicalization of predicate596

formulas into DNF. This transformation ensures that all specialization bounds are represented597

in a consistent, flat structure, thereby facilitating efficient overlap checking and coherence598

verification. Given a potentially nested predicate formula P̂ (P1, . . . , Px), canonicalization599

proceeds via standard logical transformations. First, De Morgan’s laws are applied to600

push not operators to atomic predicates. Next, distributivity rules convert the formula to601

DNF, where each disjunct represents a complete specialization scenario. Finally, nested602

any predicates are flattened (e.g., any(any(A, B), C) becomes any(A, B, C)), and redundant603

CVIT 2016

23:18 Meta-Monomorphizing Specializations

clauses are eliminated via subsumption checking. This canonical representation is essential604

for the efficiency of our overlap detection algorithm.605

Coherence. At a given method call site, multiple implementations may be applicable. To606

resolve such ambiguities, one could adopt the lattice rule from the original Rust Specialization607

RFC [59]. The lattice rule requires that for any two overlapping implementations, a greatest608

lower bound (GLB)—or meet—must exist in the global specialization lattice. This GLB609

must explicitly handle the intersection, ensuring the compiler can always identify a unique,610

most-specific implementation. We adopt a more permissive, local-resolution approach. Rather611

than enforcing global lattice coherence at the definition site, which would require developers612

to provide exhaustive intersection implementations, we resolve dispatch at each specific613

spec! call site. Our system employs a stratified priority hierarchy to select the candidate614

satisfying the most specific conditions, allowing us to support patterns that would be rejected615

by the strict lattice rule. For example, if a call site matches both T: T1 and T: T2 + T3,616

the lattice rule would demand a global T: T1 + T2 + T3 implementation. In contrast, our617

system resolves the call to T: T2 + T3, as it is more specific within our partial ordering. By618

shifting the coherence check from a global property of the trait to a local property of the call619

site, we provide a more flexible specialization mechanism. If a call remains ambiguous, a620

compile-time error is issued, prompting the user to refine the local conditions. This resolution621

is governed by the following partial ordering:622

T = B1 ≻ T = T1 ≻ T: T1 + T2 ≻ T: T1623

≻ T = not(B1) ≻ T = not(T1) ≻ T: not(T1 + T2) ≻ T: not(T1)624

4 Validation625

To validate the utility of meta-monomorphizing specializations, we conducted an ecosystem-626

wide analysis of public Rust codebases. Our evaluation quantifies potential improvements627

in code maintainability and identifies real-world patterns that could benefit from formal628

specialization mechanisms, as observed in prior work on language tooling and type system629

reuse [13]. We made a replication package for the experiment publicly available on Zenodo.630

Methodology. We developed a static analysis tool by instrumenting the standard Rust631

compiler with a custom pass, similarly to what is done in [14]. The tool operates on the HIR632

to reconstruct a custom tree representation for every function, trait, and implementation633

item. To identify candidate functions for specialization, we employed a two-stage heuristic:634

1. Grouping: Functions are grouped based on name similarity and signature compatibility635

(e.g., the same number and types of parameters).636

2. Structural Similarity: We compute the tree edit distance [10, 71, 72] (TED) between the637

trees within each group using the ZSS algorithm proposed by Zhang and Shasha [98].638

Similarity, it is normalized as:639

sim(T1, T2) = 1 − TED(T1, T2)
max(|T1|, |T2|)640

where |T | denotes the number of nodes in tree T . To optimize performance, we bypass641

pairs where the size ratio min(|T1|, |T2|)/ max(|T1|, |T2|) falls below the target threshold,642

as such pairs cannot mathematically satisfy the similarity criterion.643

Dataset. Experiments were executed on an Intel i7-8565U (4C/8T) with 16 GB of RAM,644

utilizing the nightly-2025-11-17 toolchain. We applied two similarity thresholds: 90% to645

capture a broader range of specialization opportunities and 99% to focus on near-identical646

https://doi.org/10.5281/zenodo.18499859

Anonymous author(s) 23:19

structures. The dataset comprises representative crates from crates.io, spanning various647

domains and scales (cf. Table 1). To ensure a representative analysis of the Rust ecosystem,648

we curated a diverse dataset of open-source projects. The selection includes high-traffic649

crates from crates.io, prominent GitHub repositories, and specialized libraries, covering a650

broad spectrum of architectural patterns. The first three columns of Table 1 summarize the651

name (along with the link) and total number of functions/traits.652

Pattern Identification. Let us define, once and for all, the zero-sized type struct ZST; as a653

type that occupies no memory space. The pattern identification focuses on four prevalent654

manual specialization patterns currently employed in the ecosystem.655

1. The trait provides a version of the function for each type it supports, and the caller is656

responsible for manually selecting the correct version. For instance:657

trait Tr<T> { fn fdef(&self, v: T); fn fi32(&self, v: i32); }

impl<T> Tr<T> for ZST { fn fdef(&self, t: T) {} fn fi32(&self, v: i32) {} }
658

2. The trait is manually monomorphized by creating distinct implementations for each type,659

and the caller manually selects the trait implementation to use. For instance:660

trait Tr1<T> { fn fdef(&self, v: T); }

trait Tr2 { fn fi32(&self, v: i32); }

impl<T> Tr1<T> for ZST { fn fdef(&self, t: T) {} }

impl Tr2 for ZST { fn fi32(&self, v: i32) {} }
661

3. A distinct function is defined for each type, and the caller manually selects the correct662

function to call. For instance:663

fn fdef<T>(x: &MyType, v: T) {} fn fi32(x: &MyType, v: i32) {}
664

4.
∑

- and
∏

-types have inherent implementations for each type variant, and the caller665

manually selects the correct method to call. For instance:666

impl ZST { fn fdef<T>(&self, v: T) {} fn fi32(&self, v: i32) {} }
667

In all identified patterns, developers must manually dispatch to the appropriate implemen-668

tation. This approach consistently increases lines of code and maintenance effort. Moreover,669

each pattern introduces its own form of boilerplate:670

Redundant Declarations: Patterns 1, 2, and 4 require developers to write and maintain671

multiple, nearly identical function or trait declarations, where the only substantive672

difference is the type signature.673

Manual Dispatch Logic: Call sites must implement branching logic, typically via match674

statements on TypeId, to select the correct function at runtime. This boilerplate scales675

linearly with the number of specialized types, compounding complexity.676

Unsafe Code: To bridge the gap between the statically unknown generic type and the677

concrete type required by a specialized function, developers are often forced to employ678

unsafe operations such as transmute_copy.679

The following example illustrates the manual dispatch boilerplate common to all these680

patterns:681

CVIT 2016

23:20 Meta-Monomorphizing Specializations

fn call<T: 'static>(zst: &ZST, v: T) {

match std::any::TypeId::of::<T>() {

id if id == std::any::TypeId::of::<i32>() => {

// SAFETY: We just checked that T is i32

let v_i32 = unsafe { std::mem::transmute_copy::<T, i32>(&v) };

// Call the i32 version

}

/* Other type arms... */
_ => { /* Call the default version */ } }

682

It is crucial to emphasize that the value proposition of meta-monomorphization extends far683

beyond mere LoC reduction. The manual patterns identified are fundamentally constrained684

by their reliance on nominal type equality checks (TypeId::of). This mechanism is inherently685

deficient, as it lacks support for predicate polymorphism. It cannot, for instance, express a686

condition such as T=i32 ∨ T=u32 without duplicating code across multiple match arms, further687

inflating LoC and architectural complexity.688

Moreover, these ad hoc solutions are incapable of reasoning about trait bounds (e.g.,689

specializing behavior if a type implements Clone) and cannot handle non-static lifetimes,690

as TypeId imposes a 'static bound. By obviating the need for manual dispatch and691

unsafe transmute operations, a native specialization mechanism yields profound benefits for692

code safety and maintainability. It replaces fragile, runtime-dependent heuristics with a693

robust, declarative system, transferring the burden of correctness from the developer to the694

compiler’s type checker and borrow checker. This not only eliminates a significant source695

of potential memory safety vulnerabilities but also enhances code clarity and simplifies696

long-term maintenance.697

Results. The analysis was conducted using similarity thresholds of 90% and 99%, with698

the resulting data presented in Table 1. For each project and threshold, we recorded the699

execution time (in seconds) and peak resident set size (RSS) in MB. Additionally, we700

identified the number of unique specializable functions and traits, reporting both their701

absolute counts and their respective percentages relative to the project totals. Our analysis702

reveals that specialization is a pervasive requirement. Across the analyzed projects, we703

identified numerous instances where specialization could be applied to reduce boilerplate code704

and improve performance. As shown in Figure 1a, on average more than 20% of functions in705

the analyzed codebases were found to be specializable at the 90% similarity threshold, with706

some projects exhibiting even higher proportions.707

At the 99% similarity threshold, the average was approximately 10%, indicating that708

even under stricter similarity requirements, a significant number of functions could benefit709

from specialization. We observed a positive correlation between project scale and the710

density of specialization candidates (Figure 1b), suggesting that larger codebases suffer711

disproportionately from the lack of specialization features.712

To evaluate the impact of a specialization implementation compared to Rust’s current713

non-overlapping subset, we categorized specializable functions into two distinct groups:714

1. Already Specializable: Functions that satisfy our predefined heuristic and also possess a715

permutation of type parameters that ensures they remain non-overlapping.716

2. Newly Specializable: Functions that satisfy the heuristic but remain inherently overlapping717

regardless of parameter permutation, thus requiring a full specialization implementation718

to be resolved.719

Overlaps typically arise from generic type parameters, non-mutually exclusive trait bounds,720

or identical types across multiple function signatures. For instance, fn a(x: i32, y: u32) is721

Anonymous author(s) 23:21

90% Threshold 99% Threshold

0%

10%

20%

30%

40%

50%

60%

Sp
ec

ia
liz

ab
le

 Fu
nc

tio
ns

Distribution of Specializable Functions

(a) distribution

0 10000 20000 30000 40000 50000
Total Functions

0%

10%

20%

30%

40%

50%

60%

Sp
ec

ia
liz

ab
le

 Fu
nc

tio
ns

Proportion of Specializable Functions vs Total Functions
90% Threshold
99% Threshold

(b) correlation with number of functions.

90% Threshold 99% Threshold
0%

5%

10%

15%

20%

25%

30%

Sp
ec

ia
liz

ab
le

 Fu
nc

tio
ns

Type of Specializable Functions
Already Spec.
Newly Spec.

(c) types

Figure 1 Distribution and types of specializable functions and their correlation with the total
number of functions.

Threshold 90% Threshold 99%
Total Functions Traits Functions Traits

Fns Trs s MB # % # % s MB # % # %

syn 11140 129 167 200 2394 21.5% 36 27.9% 200 181 1313 11.8% 30 23.3%
hashbr
own 727 34 0.77 106 172 23.7% 10 29.4% 1.12 106 122 16.8% 9 26.5%
bitflag
s 161 26 0.06 90 40 24.8% 16 61.5% 0.11 90 34 21.1% 15 57.7%
proc-
macro2 460 16 3.20 96 63 13.7% 0 0.0% 1.24 94 30 6.5% 0 0.0%
quote 395 32 3.56 89 142 35.9% 4 12.5% 5.27 89 12 3.0% 4 12.5%
base64 84 14 0.04 88 0 0.0% 0 0.0% 0.06 89 0 0.0% 0 0.0%
libc 583 10 208 108 125 21.4% 0 0.0% 293 108 2 0.3% 0 0.0%
getran
dom 38 3 0.13 88 8 21.1% 0 0.0% 0.04 88 6 15.8% 0 0.0%
rand 598 50 12.25 121 317 53.0% 15 30.0% 18.10 121 215 36.0% 11 22.0%
indexm
ap 931 42 2.43 111 390 41.9% 20 47.6% 1.96 110 230 24.7% 17 40.5%
cfg-if 0 0 0.00 51 0 N/A 0 N/A 0.00 51 0 N/A 0 N/A
serde 3141 71 574 329 1648 52.5% 27 38.0% 293 284 1374 43.7% 20 28.2%
itertool
s 865 33 17.54 140 159 18.4% 3 9.1% 2.53 115 36 4.2% 2 6.1%

autocfg 50 2 0.10 82 16 32.0% 0 0.0% 0.13 83 0 0.0% 0 0.0%
memch
r 367 9 6.15 101 108 29.4% 2 22.2% 8.64 101 75 20.4% 2 22.2%

itoa 18 3 0.02 76 0 0.0% 0 0.0% 0.02 76 0 0.0% 0 0.0%
json 1432 49 10.18 119 706 49.3% 13 26.5% 11.31 119 533 37.2% 10 20.4%
thiserr
or 188 21 0.22 96 18 9.6% 1 4.8% 0.32 96 18 9.6% 1 4.8%
unicod
e-ident 15 1 0.05 83 2 13.3% 0 0.0% 0.08 83 0 0.0% 0 0.0%
once_c
ell 106 8 0.17 88 41 38.7% 5 62.5% 0.14 88 37 34.9% 5 62.5%
log 77 7 0.03 76 16 20.8% 3 42.9% 0.06 76 14 18.2% 3 42.9%
heck 23 12 0.03 75 6 26.1% 1 8.3% 0.08 75 0 0.0% 0 0.0%
cc 517 20 0.78 99 30 5.8% 0 0.0% 0.84 98 8 1.5% 0 0.0%
regex 3597 89 150 177 843 23.4% 26 29.2% 52.22 159 586 16.3% 22 24.7%
ryu 43 3 0.41 78 2 4.7% 0 0.0% 0.06 76 0 0.0% 0 0.0%
clap 1730 73 22.69 157 229 13.2% 11 15.1% 13.46 138 138 8.0% 11 15.1%
aho-cor
asick 699 26 21.76 160 174 24.9% 8 30.8% 5.22 122 145 20.7% 6 23.1%
smallv
ec 174 35 0.32 95 27 15.5% 5 14.3% 0.17 94 17 9.8% 5 14.3%

strsim 29 3 0.03 83 4 13.8% 0 0.0% 0.04 82 0 0.0% 0 0.0%
parkin
g_lot 363 35 0.88 90 113 31.1% 8 22.9% 0.60 90 32 8.8% 4 11.4%
lazy_s
tatic 2 0 0.00 58 0 0.0% 0 N/A 0.00 58 0 0.0% 0 N/A

Continued on next page

CVIT 2016

https://github.com/dtolnay/syn
https://github.com/rust-lang/hashbrown
https://github.com/rust-lang/hashbrown
https://github.com/bitflags/bitflags
https://github.com/bitflags/bitflags
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/proc-macro2
https://github.com/dtolnay/quote
https://github.com/marshallpierce/rust-base64
https://github.com/rust-lang/libc
https://github.com/rust-random/getrandom
https://github.com/rust-random/getrandom
https://github.com/rust-random/rand
https://github.com/indexmap-rs/indexmap
https://github.com/indexmap-rs/indexmap
https://github.com/rust-lang/cfg-if
https://github.com/serde-rs/serde
https://github.com/rust-itertools/itertools
https://github.com/rust-itertools/itertools
https://github.com/cuviper/autocfg
https://github.com/BurntSushi/memchr
https://github.com/BurntSushi/memchr
https://github.com/dtolnay/itoa
https://github.com/serde-rs/json
https://github.com/dtolnay/thiserror
https://github.com/dtolnay/thiserror
https://github.com/dtolnay/unicode-ident
https://github.com/dtolnay/unicode-ident
https://github.com/matklad/once_cell
https://github.com/matklad/once_cell
https://github.com/rust-lang/log
https://github.com/withoutboats/heck
https://github.com/rust-lang/cc-rs
https://github.com/rust-lang/regex
https://github.com/dtolnay/ryu
https://github.com/clap-rs/clap
https://github.com/aho-corasick
https://github.com/aho-corasick
https://github.com/servo/rust-smallvec
https://github.com/servo/rust-smallvec
https://github.com/rapidfuzz/strsim-rs
https://github.com/Amanieu/parking_lot
https://github.com/Amanieu/parking_lot
https://github.com/rust-lang-nursery/lazy-static.rs
https://github.com/rust-lang-nursery/lazy-static.rs

23:22 Meta-Monomorphizing Specializations

Threshold 90% Threshold 99%
Total Functions Traits Functions Traits

Fns Trs s MB # % # % s MB # % # %

num-tr
aits 2585 47 53.28 139 1496 57.9% 10 21.3% 48.28 139 1432 55.4% 5 10.6%

socket2 350 12 0.95 94 48 13.7% 1 8.3% 0.36 94 10 2.9% 1 8.3%
semver 87 14 0.38 90 8 9.2% 1 7.1% 0.11 88 2 2.3% 1 7.1%
digest 1142 164 170 108 536 46.9% 43 26.2% 236.64 107 402 35.2% 34 20.7%
either 132 19 0.22 98 28 21.2% 3 15.8% 0.25 98 20 15.2% 2 10.5%
version
_check 38 2 0.03 82 8 21.1% 0 0.0% 0.08 82 0 0.0% 0 0.0%
rustix 1809 39 6.64 329 196 10.8% 7 17.9% 6.46 329 87 4.8% 7 17.9%
bytes 695 34 9.64 102 186 26.8% 14 41.2% 11.11 101 106 15.3% 13 38.2%
time 1558 60 123 139 486 31.2% 19 31.7% 172 139 233 15.0% 14 23.3%
url 365 34 0.88 110 8 2.2% 0 0.0% 0.35 108 0 0.0% 0 0.0%
toml 2233 122 26.16 110 826 37.0% 27 22.1% 12.24 109 659 29.5% 20 16.4%
futures 2313 126 14.52 158 741 32.0% 37 29.4% 7.69 158 593 25.6% 30 23.8%
glob 32 7 0.04 84 0 0.0% 0 0.0% 0.01 83 0 0.0% 0 0.0%
tantivy 3871 150 521 253 445 11.5% 24 16.0% 11.14 251 254 6.6% 16 10.7%
tauri 4898 196 469 350 1097 22.4% 34 17.3% 146 350 750 15.3% 26 13.3%
polars 43805 1476 9965 1458 14356 32.8% 388 26.3% 9065 1458 9196 21.0% 293 19.9%
cargo 4441 108 234 413 427 9.6% 18 16.7% 22.23 400 222 5.0% 14 13.0%
bat 356 16 0.24 142 6 1.7% 0 0.0% 0.33 142 0 0.0% 0 0.0%
ripgrep 2096 66 8.37 116 234 11.2% 1 1.5% 3.55 111 179 8.5% 1 1.5%
quiche 2607 110 32.61 172 291 11.2% 16 14.5% 13.10 172 91 3.5% 10 9.1%
influxd
b 3547 212 2430 602 1385 39.0% 56 26.4% 1241 601 1034 29.2% 48 22.6%
typst 7260 233 197 376 1293 17.8% 55 23.6% 87.11 375 689 9.5% 42 18.0%
alacritt
y 2710 72 801 310 227 8.4% 11 15.3% 722 261 112 4.1% 7 9.7%

helix 3080 116 36.18 292 240 7.8% 5 4.3% 10.73 275 47 1.5% 5 4.3%
pueue 389 24 655 1403 58 14.9% 5 20.8% 0.67 176 38 9.8% 4 16.7%
gitoxid
e 7148 484 617 352 1245 17.4% 36 7.4% 79.75 202 796 11.1% 26 5.4%
texture
-synthe
sis

166 10 0.19 95 2 1.2% 0 0.0% 0.09 95 2 1.2% 0 0.0%

sendm
e 74 7 2.80 211 29 39.2% 3 42.9% 0.09 191 16 21.6% 1 14.3%

union 29581 1050 13764 854 15570 52.6% 176 16.8% 5467 781 10465 35.4% 90 8.6%
zed 54980 1674 6594 1317 21034 38.3% 256 15.3% 4312 873 10891 19.8% 206 12.3%
ruff 25887 640 1022 1075 5833 22.5% 127 19.8% 471 1074 3698 14.3% 97 15.2%
hypers
witch 32172 826 19738 2635 16947 52.7% 231 28.0% 12533 2642 12309 38.3% 159 19.2%

lapce 1797 62 114 380 176 9.8% 11 17.7% 71.98 367 56 3.1% 5 8.1%
nushell 10592 330 1155 2716 1783 16.8% 61 18.5% 132 325 1148 10.8% 51 15.5%

Table 1 Experimental results of the ecosystem-wide analysis. For each analyzed crate, the table
reports the total number of functions (Fn) and traits (Tr), followed by performance metrics and
specialization candidates identified at two similarity thresholds (90% and 99%). Metrics include
execution time in seconds (s), peak memory usage in megabytes (MB), and the absolute number
(#) and percentage (%) of specializable functions and traits.

considered “already specializable” in relation to fn b<T>(x: T, y: u32), as the latter can722

be permuted into a non-overlapping form. A critical finding is the delta between already723

specializable and newly specializable functions. Full stable specialization triples the available724

candidates compared to current non-overlapping rules. At the 90% threshold, 67% of725

identified candidates require stable specialization to be implemented natively (Figure 1c).726

This confirms that current language limitations force developers into the suboptimal patterns727

identified above.728

Subsequently, we sought to determine which of the patterns identified earlier were most729

prevalent in the analyzed codebases. To this end, we first classified the functions into four730

https://github.com/rust-num/num-traits
https://github.com/rust-num/num-traits
https://github.com/rust-lang/socket2
https://github.com/dtolnay/semver
https://github.com/RustCrypto/traits
https://github.com/rayon-rs/either
https://github.com/SergioBenitez/version_check
https://github.com/SergioBenitez/version_check
https://github.com/bytecodealliance/rustix
https://github.com/tokio-rs/bytes
https://github.com/time-rs/time
https://github.com/servo/rust-url
https://github.com/toml-rs/toml
https://github.com/rust-lang/futures-rs
https://github.com/rust-lang/glob
https://github.com/quickwit-oss/tantivy
https://github.com/tauri-apps/tauri
https://github.com/pola-rs/polars
https://github.com/rust-lang/cargo
https://github.com/sharkdp/bat
https://github.com/BurntSushi/ripgrep
https://github.com/cloudflare/quiche
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/typst/typst
https://github.com/alacritty/alacritty
https://github.com/alacritty/alacritty
https://github.com/helix-editor/helix
https://github.com/Nukesor/pueue
https://github.com/GitoxideLabs/gitoxide
https://github.com/GitoxideLabs/gitoxide
https://github.com/EmbarkStudios/texture-synthesis
https://github.com/EmbarkStudios/texture-synthesis
https://github.com/EmbarkStudios/texture-synthesis
https://github.com/n0-computer/sendme
https://github.com/n0-computer/sendme
https://github.com/unionlabs/union
https://github.com/zed-industries/zed
https://github.com/charliermarsh/ruff
https://github.com/juspay/hyperswitch
https://github.com/juspay/hyperswitch
https://github.com/lapce/lapce
https://github.com/nushell/nushell

Anonymous author(s) 23:23

40%

36%
22%

2%

Distribution of Function Kinds
Trait Impl Fns
Inherent Impl Fns
Bare Fns
Trait Fns

(a) Functions by Kind

Bare functions Trait functions Trait impl functionsInherent impl functions
0%

20%

40%

60%

80%

100%

Sp
ec

ia
liz

ab
le

 Fu
nc

tio
ns

Percentage of Specializable Functions by Kind and Threshold
90% Threshold
99% Threshold

(b) Specializable Functions by Kind.

Figure 2 Distribution of functions and specializable functions by kind.

distinct categories based on their structure: bare functions (not associated with any trait or731

impl), trait functions (defined within a trait), trait impl functions (defined within a trait732

impl block), and inherent impl functions (defined within an inherent impl block). As shown733

in Figure 2a, we found that the majority of functions in the analyzed codebases were trait734

impl functions, followed by inherent impl functions and bare functions, with trait functions735

being the least common by a substantial margin. As Figure 2b demonstrates, the group736

with the majority of specializable functions consisted of trait impl functions, indicating that737

these functions were not only the most common but also the most likely to benefit from738

stable specialization. In particular, the most common patterns associated with trait impls739

are the first two patterns identified earlier (manual monomorphization via distinct trait740

implementations and via multiple trait methods), suggesting that many developers resort to741

these approaches to achieve specialization in their code. As noted earlier, these two patterns742

would benefit most from specialization features, as both would see a substantial reduction in743

boilerplate code and complexity.744

Discussion. While the data suggests significant benefits, several factors merit consideration.745

Specialization is not a universal solution; the trade-off between performance gains and binary746

size or compile-time complexity must be evaluated on a case-by-case basis. Our tree-based747

similarity metric relies on naming and structure. Although effective, it may yield false748

positives in cases of coincidental structural similarity or false negatives where the logic is749

semantically identical but structurally divergent. The prevalence of these patterns does not750

necessarily indicate “poor code” but rather reflects the lack of expressive power in the current751

trait system when dealing with overlapping implementations.752

Crucially, our meta-monomorphization approach constitutes a practical solution that753

is immediately available, in contrast to Rust’s native specialization, which has remained754

unstable on the nightly channel for years due to unresolved soundness concerns [90]. Our data755

reveals that 67% of specialization candidates require full overlapping support, a capability756

absent from Rust’s current non-overlapping specialization subset. Meta-monomorphization757

fills this gap without compiler changes, eliminating reliance on unsafe operations such758

as transmute_copy, enabling predicate polymorphism over trait bounds beyond TypeId-759

based dispatch, and supporting non-'static lifetimes while remaining fully compatible with760

standard compiler optimizations. By shifting specialization to the metaprogramming layer,761

developers gain immediate access to expressive specialization patterns that would otherwise762

remain indefinitely blocked.763

In conclusion, the data demonstrates that specialization would significantly reduce764

boilerplate and formalize common architectural workarounds, thereby enhancing the overall765

robustness of the Rust ecosystem.766

CVIT 2016

23:24 Meta-Monomorphizing Specializations

5 Threats to Validity767

We organize our discussion following the taxonomy of Wohlin et al. [97]’s taxonomy.768

Construct Validity. Our study relies on specific metrics to evaluate the effectiveness of our769

approach. If these metrics do not accurately capture the constructs we intend to measure, the770

validity of our conclusions could be threatened. To mitigate this risk, we carefully selected771

metrics that are widely accepted in the research community and relevant to our study’s772

objectives. The criteria used to determine the similarity between code snippets may not773

fully capture the nuances of code functionality and intent. Hence, our similarity assessments774

might not reflect true equivalence in behavior. We based our similarity criteria on established775

practices in code analysis and validated them through preliminary experiments to mitigate776

this threat.777

Internal Validity. Our approach relies on certain assumptions about the structure of HIRs778

generated by the Rust compiler. If these assumptions do not hold for all codebases, the779

validity of our results could be affected. The mitigation strategy involved thorough testing780

of our method across a variety of Rust projects to ensure that our assumptions were valid in781

practice.782

External Validity. Our evaluation is based on 65 open-source projects from GitHub and783

crates.io. While these projects cover a broad spectrum of real-world software, they may784

not capture the full variability of proprietary or industrial codebases. However, many of the785

analyzed projects are widely used in production and serve as dependencies for industrial786

systems. This increases our confidence that the results generalize beyond purely academic or787

hobbyist software. The selection of projects may introduce bias if certain types of software788

or development practices are over represented. To mitigate this issue, we systematically789

included a diverse set of projects by selecting repositories of varying sizes, domains, and790

activity levels.791

Conclusion Validity. Our quantitative results depend on the accuracy of our data collection792

and analysis methods. Errors in data extraction, measurement, or statistical analysis could793

lead to incorrect conclusions. Nonetheless, we employed automated tools for data collection794

and analysis to minimize human error. Additionally, we performed multiple runs of our795

experiments to ensure the consistency of the results.796

6 Related Work797

Parametric Polymorphism & Monomorphization. Our work is grounded in the tradition798

of parametric polymorphism [18, 76, 93, 36], as formalized in System F [32, 77, 16] and799

Hindley-Milner type systems [40, 64]. To eliminate abstraction overhead over algebraic data800

types [55, 89, 9], numerous languages—including C++ [84, 91, 83, 2], Rust [62], Go [35],801

MLton [20, 94], and Futhark [41]—employ monomorphization. Recent formal treatments [57]802

have extended this concept to encompass existential and higher-rank polymorphism. While803

conventional optimizing compilers [1, 48, 27, 66] utilize interprocedural analyses and procedure804

cloning [25, 26, 30, 42] to enable optimizations like inlining [80, 19, 4] and SSA-based805

transformations [17, 95, 96, 29, 51], our approach diverges by shifting the specialization806

process to the metaprogramming stage. This allows us to reuse existing optimization passes807

without necessitating intrusive compiler modifications.808

Ad Hoc Polymorphism & Specialization. Beyond zero-cost parametricity, specialization is a809

vital mechanism for ad hoc polymorphism (e.g., traits, interfaces), enabling the exploitation810

Anonymous author(s) 23:25

of hardware idioms (SIMD) or optimized algorithms [3]. C++ facilitates this through ex-811

plicit and partial template specialization [84, 91, 6], while Haskell utilizes the SPECIALIZE812

pragma [74] over its dictionary-passing implementation of type classes [75, 36, 85]. In Rust, the813

stabilization of a native specialization feature remains deferred due to unresolved soundness814

and coherence concerns [59, 60, 61, 79, 90]. In contrast, our “meta-monomorphization” tech-815

nique preserves developer control through code generation (macros), thereby circumventing816

the need to extend the language’s trait solver.817

Coherence, Safety & Limits. The specialization of interfaces introduces significant challenges818

concerning coherence [76, 44, 28, 85], overlapping instances [86, 85], and orphan rules.4 By819

resolving specialization choices via explicit predicates during macro expansion, we sidestep820

the pitfalls of implicit global resolution. Nevertheless, our work acknowledges and respects821

the theoretical limitations inherent in specializing polymorphic recursion and existential822

types [31, 47, 43, 38, 49, 65, 54, 70, 11, 37, 78]. Consequently, we target first-order programs823

and specific higher-ranked patterns where such issues do not arise.824

Metaprogramming & Ecosystems. Existing mechanisms such as Scala’s @specialized [69]825

annotation and Java’s Project Valhalla6 have attempted to mitigate the effects of type826

erasure and boxing, but they often introduce challenges related to code bloat or runtime827

complexity. Leveraging modern metaprogramming paradigms [56, 81, 15, 23, 39, 52, 24, 21],828

our framework emits specialized implementations before the type-checking phase. This829

design ensures compatibility with mature compiler pipelines while offering a practical path830

to specialization in languages that lack stable, built-in support. Our primary contribution,831

therefore, is the strategic shift of specialization to compile-time metaprogramming. This832

approach yields deterministic, type-checked specialized code without modifying the host833

compiler or its trait solver. While acknowledging the known limits of polymorphic recursion834

and existential quantification, we focus on first-order programs and a restricted set of rank-1835

and rank-2 patterns where explicit, predicate-driven selection results in predictable code size836

and performance characteristics.837

7 Conclusion838

In this work, we have introduced meta-monomorphizing specializations, a novel framework for839

achieving zero-cost specialization by leveraging compile-time metaprogramming. By encoding840

specialization constraints as type-level predicates, our approach enables deterministic and841

coherent dispatch without requiring modifications to the host compiler or contending with the842

complexities of overlapping instances. We have provided a formal treatment of our method,843

covering first-order, predicate-based, and higher-ranked trait bound (HRTB) specializations,844

complete with robust support for lifetime polymorphism. Our analysis of public Rust845

codebases reveals that specialization is a prevalent and vital optimization strategy. Meta-846

monomorphization offers a principled alternative to common, often unsafe, workarounds,847

ultimately yielding more idiomatic, maintainable, and performant code.848

CVIT 2016

23:26 Meta-Monomorphizing Specializations

References849

1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and850

Tools. Addison Wesley, Reading, Massachusetts, 1986.851

2 Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns852

Applied. Addison-Wesley, February 2001.853

3 Johnathan Alsop, Weon Taek Na, Matthew D. Sinclair, Samuel Grayson, and Sarita Adve. A854

Case for Fine-grain Coherence Specialization in Heterogeneous Systems. ACM Transactions855

on Architecture and Code Optimization, 19(3):41:1–41:26, September 2022.856

4 Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive Inlining. In A. Michael857

Berman, editor, Proceedings of the 18th Conference on Programming Language Design and858

Implementation (PLDI’97), pages 134–145, Las Vegas, NV, USA, June 1997. ACM.859

5 Franz Baader, Ralf Molitor, and Stephan Tobies. Tractable and Decidable Fragments of860

Conceptual Graphs. In William M. Tepfenhart and Walling R. Cyre, editors, Proceedings861

of the 7th International Conference on Conceptual Structures (ICCS’99), LNCS 1640, pages862

480–493, Blackburg, VA, USA, July 1999. Springer.863

6 Bruno Bachelet, Antoine Mahul, and Loïc Yon. Template Metaprogramming Techniques for864

Concept-Based Specialization. Scientific Programming, 21(1-2):43–61, January 2013.865

7 Patrik Backhouse, Roland Carland Jansson, Johan Jeuring, and Lambert G. L. T. Meertens.866

Generic Programming: An Introduction. In S. Doaitse Swierstra, Pedro Rangel Henriques,867

and José Nuno Oliveira, editors, Proceedings of the 3rd International School on Advanced868

Functional Programming (AFP’98), LNCS 1608, pages 28–115, Braga, Portugal, September869

1998. Springer.870

8 David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler Transformations for871

High-Performance Computing. ACM Computing Surveys, 26(4):345–420, December 1994.872

9 Jan A. Bergstra and John V. Tucker. Equational Specifications, Complete Term Rewriting873

Systems, and Computable and Semicomputable Algebras. Journal of ACM, 42(6):1194–1230,874

November 1995.875

10 Philip Bille. A Survey on Tree Edit Distance and Related Problems. Theoretical Computer876

Science, 337(1-3):217–239, June 2005.877

11 Richard Bird and Lambert Meertens. Nested Datatypes. In Proceedings of the 4th International878

Conference on Mathematics of Program Construction (MPC’98), LNCS 1422, pages 52–67,879

Marstrand, Sweden, June 1998. Springer.880

12 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe Program-881

ming: Preventing Data Races And Deadlocks. In Satoshi Matsuoka, editor, Proceedings of882

the 17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and883

Applications (OOPSLA’02), pages 211–230, Seattle, WA, USA, November 2002. ACM Press.884

13 Federico Bruzzone, Walter Cazzola, and Luca Favalli. Code Less to Code More: Streamlining885

Language Server Protocol and Type System Development for Language Families. Journal of886

Systems and Software, 231, January 2026. doi:10.1016/j.jss.2025.112554.887

14 Federico Bruzzone, Walter Cazzola, and Luca Favini. Prioritizing configuration relevance888

via compiler-based refined feature ranking, 2026. URL: https://arxiv.org/abs/2601.16008,889

arXiv:2601.16008.890

15 Eugene Burmako. Scala Macros: Let Our Powers Combine! On How Rich Syntax and891

Static Types Work with Meta-Programming. In Proceedings of the 4th Workshop on Scala892

(SCALA’13), Montpellier, France, July 2013. ACM.893

16 Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System F-Omega with Equirecursive894

Types for Datatype-Generic Programming. In Rupak Majumdar, editor, Proceedings of the 43rd895

Symposium on Principles of Programming Languages (POPL’16), pages 30–43, St. Petersburg,896

FL, USA, January 2016. ACM.897

17 David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural Constant898

Propagation. In Richard L. Wexelblat, editor, Proceedings of the Sigplan Symposium on899

Compiler Construction (SCC’86), pages 152–161, Palo Alto, CA, USA, June 1986. ACM.900

https://doi.org/10.1016/j.jss.2025.112554
https://arxiv.org/abs/2601.16008
https://arxiv.org/abs/2601.16008

Anonymous author(s) 23:27

18 Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and Polymor-901

phism. ACM Computing Surveys, 17(4):471–523, December 1985.902

19 John Cavazos and Michael F. P. O’Boyle. Automatic Tuning of Inlining Heuristics. In903

Jeff Kuehn and Wes Kaplow, editors, Proceedings of the 2005 ACM/IEEE Conference on904

Supercomputing (SC’05), pages 14–14, Seattle, WA, USA, November 2005. IEEE.905

20 Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-Directed Closure Conversion906

for Typed Languages. In Gert Smolka, editor, Proceedings of the 9th European Symposium on907

Programming (ESOP’00), LNCS 1782, pages 56–71, Berlin, Germany, March 2000. Springer.908

21 Adam Chlipala. Ur: Statically-Typed Metaprogramming with Type-Level Record Computation.909

In Alex Aiken, editor, Proceedings of the 31st Conference on Programming Language Design910

and Implementation (PLDI’10), pages 122–133, Toronto, Canada, June 2010. ACM.911

22 David G Clarke, John M Potter, and James Noble. Ownership types for flexible alias protection.912

In Craig Chambers, editor, Proceedings of 13th International Conference on Object-Oriented913

Programming Systems, Languages and Applications (OOPSLA’98), pages 48–64, Vancouver,914

BC, Canada, October 1998. ACM.915

23 William D. Clinger and Jonathan Rees. Macros That Work. In David Wise, editor, Proceedings916

of the 18th Symposium on Principles of Programming Languages (POPL’91), pages 155–162,917

Orlando, FL, USA, January 1991. ACM.918

24 William D. Clinger and Mitchell Wand. Hygenic Macro Technology. In Guy L. Steele Jr919

and Richard P. Gabriel, editors, Proceedings of the 4th History of Programming Languages920

Conference (HOPL’21), pages 1–110, Virtual, June 2021. ACM.921

25 Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Procedure Cloning. In Carl K. Chang,922

editor, Proceedings of the 4th International Conference on Computer Languages (ICCL’92),923

pages 95–105, Oakland, CA, USA, April 1992. IEEE.924

26 Keith D. Cooper, Mary W. Hall, and Ken Kennedy. A Methodology for Procedure Cloning.925

Computer Languages, 19(2):105–117, April 1993.926

27 Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann, November927

2022.928

28 Pierre-Louis Curien and Giorgio Ghelli. Coherence of Subsumption, Minimum Typing and929

Type-Checking in F≤. Mathematical Structures in Computer Science, 2(1):55–91, March 1992.930

29 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.931

Efficiently Computing Static Single Assignment Form and the Control Dependence Graph.932

ACM Transactions on Programming Languages and Systems, 13(4):451–490, October 1991.933

30 Dibyendu Das. Function Inlining Versus Function Cloning. Sigplan Notices, 38(6):23–29, June934

2003.935

31 Richard A. Eisenberg. Levity Polymorphism. In Martin Vechev, editor, Proceedings of the936

38th Conference on Programming Language Design and Implementation (PLDI’17), pages937

525–539, Barcelona, Spain, June 2017. ACM.938

32 Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique939

d’Ordre Supérieur. Phd thesis, Université Paris VII, Paris, France, June 1972.940

33 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1–101, 1987.941

34 Jean-Yves Girard, Yves Lafont, and Laurent Regnier. Advances in Linear Logic. Cambridge942

University Press, July 1995.943

35 Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor, Bernardo944

Toninho, Philip Wadler, and Nobuko Yoshida. Featherweight Go. In David Grove, editor,945

Proceedings of the 35th Conference on Object-Oriented Programming, Systems, Languages,946

and Applications (OOPSLA’20), pages 1–29, Chicago, IL, USA, November 2020. ACM.947

36 Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type948

Classes in Haskell. ACM Transactions on Programming Languages and Systems, 18(2):109–138,949

March 1996.950

37 J.J. Hallett and Kfoury. Assef J. Programming Examples Needing Polymorphic Recursion.951

Electronic Notes in Theoretical Computer Science, 136:57–102, July 2005.952

CVIT 2016

23:28 Meta-Monomorphizing Specializations

38 Fritz Henglein. Type Inference with Polymorphic Recursion. ACM Transactions on Program-953

ming Languages and Systems, 15(2):253–289, April 1993.954

39 David Herman and Mitchell Wand. A Theory of Hygieninc Macros. In Sophia Drossopoulou,955

editor, Prooceedings of the 17th European Conference on Programming Languages and Systems956

(ESOP’08), LNCS 4960, pages 48–62, Budapest, Hungary, March/April 2008. Springer.957

40 Roger Hindley. The Principal Type-Scheme of an Object in Combinatory Logic. Transactions958

of the America Mathematical Society, 146:29–60, December 1969.959

41 Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. High-Performance Defunc-960

tionalisation in Futhark. In MichałPałka and Magnus Myreen, editors, Proceedings of the961

International Symposium on Trends in Functional Programming (TFP’18), LNCS 11457, pages962

136–156, Gothenburg, Sweden, June 2018. Springer.963

42 Robert Husák, Jan Kofroň, Jakub Míšek, and Filip Zavoral. Using Procedure Cloning964

for Performance Optimization of Compiled Dynamic Languages. In Hans-Georg Fill and965

Marten van Sinderen, editors, Proceedings of the 17th International Conference on Software966

Technologies (ICSOFT’22), pages 175–186, Lisbon, Portugal, 2022. ScitePress.967

43 Shengyi Jiang, Chen Cui, and Bruno C. d. S. Oliveira. Bidirectional Higher-Rank Polymorphism968

with Intersection and Union Types. In Armando Solar-Lezama, editor, Proceedings of the969

Symposium on Principles of Programming Languages (POPL’25), pages 2118–2148, Denver,970

CO, USA, January 2025. ACM.971

44 Mark P. Jones. Coherence for Qualified Types. Research Report YALEU/DCS/RR-989, Yale972

University, New Haven, CT, USA, September 1993.973

45 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing974

the Foundations of the Rust Programming Language. In Andrew D. Gordon, editor, Proceedings975

of the 44th Symposium on Principles of Programming Languages (POPL’17), pages 66:1–66:34,976

Paris, France, January 2017. ACM.977

46 Andrew Kennedy and Claudio V. Russo. Generalized Algebraic Data Types and Object-978

Oriented Programming. In Richard P. Gabriel, editor, Proceedings of 19th ACM International979

Conference on Object-Oriented Programming Systems, Languages and Applications (OOP-980

SLA’05), pages 21–40, San Diego, CA, USA, October 2005. ACM.981

47 Andrew Kennedy and Don Syme. Design and Implementation of Generics for the .NET Common982

Language Runtime. In Proceedings of the ACM Conference on Programming Language Design983

and Implementation (PLDI01), pages 1–12, Snowbird, Utah, USA, June 2001.984

48 Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures: A985

Dependence-Based Approach. Morgan Kaufmann Publishers Inc., October 2001.986

49 Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type Reconstruction in the Presence987

of Polymorphic Recursion. ACM Transactions on Programming Languages and Systems,988

15(2):290–311, April 1993.989

50 Steve Klabnik, Carol Nichols, and Chris Krycho. The Rust Programming Language. No Starch990

Press, third edition, February 2026.991

51 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial Dead Code Elimination. In Vivek992

Sarkar, Barbara G. Ryder, and Mary Lou Soffa, editors, Proceedings of the 15th Annual993

Conference on Programming Language Design and Implementation (PLDI’94), pages 147–158,994

Orlando, FL, USA, June 1994. ACM.995

52 Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. Hygienic996

Macro Expansion. In William L. Scherlis, John H. Williams, and Richard P. Gabriel, editors,997

Proceedings of the 3rd Conference on LISP and Functional Programming (LFP’86), pages998

151–161, Cambridge, MA, USA, August 1986. ACM.999

53 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program1000

Analysis and Transformation. In Michael D. Smith, editor, Proceedings of the 2nd International1001

Symposium on Code Generation and Optimization (CGO’04), pages 75–86, San José, CA,1002

USA, March 2004. IEEE.1003

Anonymous author(s) 23:29

54 Konstantin Läufer. Type Classes with Existential Types. Journal of Functional Programming,1004

6(3):485–518, May 1996.1005

55 Daniel J. Lehmann and Michael B. Smyth. Algebraic Specification of Data Types: A Synthetic1006

Approach. Journal of Mathematical Systems Theory, 14(2):97–139, December 1981.1007

56 Yannis Lilis and Anthony Savidis. A Survey of Metaprogramming Languages. ACM Computing1008

Surveys, 52(6), October 2019.1009

57 Matthew Lutze, Philipp Schuster, and Jonathan Immanuel Brachthäuser. The Simple Essence1010

of Monomorphization. In Shriram Krishnamurthi and Sukyoung Ryu, editors, Proceedings of1011

the 40th Conference on Object-Oriented Programming, Systems, Languages, and Applications1012

(OOPSLA’25), pages 1015–1041, Singapore, October 2025. ACM.1013

58 José Pedro Magalhães, Stefan Holdermans, Johan Jeuring, and Andres Löh. Optimizing1014

Generics Is Easy! In John P. Gallagher and Janis Voitländer, editors, Proceedings of the 19th1015

Workshop on Partial Evaluation and Program Manipulation (PEPM’10), pages 33–42, Madrid,1016

Spain, January 2010. ACM.1017

59 Nicholas D. Matsakis. Specialization. RFC 1210, June 2015. https://rust-lang.github.io/1018

rfcs/1210-impl-specialization.html.1019

60 Nicholas D. Matsakis. Specialization. Discussion on RFC 1210, June 2015. https://github.1020

com/rust-lang/rfcs/pull/1210.1021

61 Nicholas D. Matsakis. Maximally Minimal Specialization: Always Applicable impls.1022

Blog Post, February 2018. https://smallcultfollowing.com/babysteps/blog/2018/02/09/1023

maximally-minimal-specialization-always-applicable-impls/.1024

62 Nicholas D. Matsakis and Felix S. Klock. The Rust Language. ACM SIGAda Letters, 34(3):103–1025

104, October 2014.1026

63 John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation by1027

Machine (Part I). Communications of the ACM, 3(4):184–195, April 1960.1028

64 Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and1029

System Sciences, 17(3):348–375, December 1978.1030

65 John C. Mitchell and Gordon D. Plotkin. Abstract Types Have Existential Type. ACM1031

Transactions on Programming Languages and Systems, 10(3):470–502, July 1988.1032

66 Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, first1033

edition, August 1997.1034

67 David R. Musser and Alexander A. Stepanov. Generic Programming. In Patrizia M. Gi-1035

anni, editor, Proceedings of the 13th International Symposium on Symbolic and Algebraic1036

Computation (ISAAC’88), LNCS 358, pages 13–25, Rome, Italy, July 1988. Springer.1037

68 Martin Odersky. Observers for Linear Types. In Bernd Krieg-Brückner, editor, Proceedings of1038

the 4th European Symposium on Programming (ESOP’92), LNCS 582, pages 390–407, Rennes,1039

France, February 1992. Springer.1040

69 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Aritma Press, 2008.1041

70 Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, first edition,1042

June 1999.1043

71 Mateusz Pawlik and Nikolaus Augsten. RTED: A Robust Algorithm for the Tree Edit Distance.1044

In José Blakely, Joseph M. Hellerstein, Nick Koudas, Wolfgang Lehner, Sunita Sarawagi, and1045

Uwe Röhm, editors, Proceedings of the 38th International Conference on Very Large Data1046

Bases (VLDB’12), volume 5, pages 334–345, Instanbul, Turkey, January 2011. ACM.1047

72 Mateusz Pawlik and Nikolaus Augsten. Efficient Computation of the Tree Edit Distance. ACM1048

Transactions on Database Systems, 40(1):3:1–3:40, March 2015.1049

73 Francis Jeffry Pelletier and Allen Hazen. Natural Deduction Systems in Logic. In Edward N.1050

Zalta and Uri Nodelman, editors, The Stanford Encyclopedia of Philosophy. Stanford University,1051

October 2021.1052

74 Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press, 2003.1053

CVIT 2016

https://rust-lang.github.io/rfcs/1210-impl-specialization.html
https://rust-lang.github.io/rfcs/1210-impl-specialization.html
https://rust-lang.github.io/rfcs/1210-impl-specialization.html
https://github.com/rust-lang/rfcs/pull/1210
https://github.com/rust-lang/rfcs/pull/1210
https://github.com/rust-lang/rfcs/pull/1210
https://smallcultfollowing.com/babysteps/blog/2018/02/09/maximally-minimal-specialization-always-applicable-impls/
https://smallcultfollowing.com/babysteps/blog/2018/02/09/maximally-minimal-specialization-always-applicable-impls/
https://smallcultfollowing.com/babysteps/blog/2018/02/09/maximally-minimal-specialization-always-applicable-impls/

23:30 Meta-Monomorphizing Specializations

75 Simon Peyton Jones, Mark P. Jones, and Erik Meijer. Type Classes: An Exploration of1054

the Design Space. In John Launchbury, editor, Proceedings of the 2nd Workshop on Haskell1055

(Haskell’97), pages 1–16, Amsterdam, The Netherlands, June 1997. ACM.1056

76 Benjamin C. Pierce. Types and Programming Languages. MIT Press, February 2002.1057

77 John C. Reynolds. Towards a Theory of Type Structure. In Bernard J. Robinet, editor,1058

Proceedings of 1974 Programming Symposium, LNCS 19, pages 408–423, Paris, France, April1059

1974. Springer.1060

78 Eric S. Roberts. Thinking Recursively. John Wiley and Sons, Inc, first edition, April 1986.1061

79 Rust Project Developers. Rust release channels. https://doc.rust-lang.org/book/1062

appendix-07-nightly-rust.html, 2024.1063

80 Robert W. Scheifler. An Analysis of Inline Substitution for a Structured Programming1064

Language. Communications of the ACM, 20(9):647–654, September 1977.1065

81 Tim Sheard and Simon Peyton Jones. Template Meta-Programming for Haskell. In Manuel1066

Chakravarty, editor, Proceedings of the 6th Workshop on Haskell (Haskell’02), pages 1–16,1067

Pittsburg, PA, USA, October 2002. ACM.1068

82 Christopher Strachey. Fundamental Concepts in Programming Languages. Journal Higher-1069

Order and Symbolic Computation, 13(1-2):11–49, April 2000.1070

83 Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, March 1994.1071

84 Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, fourth edition, July1072

2005.1073

85 Peter J. Stuckey and Martin Sulzmann. A Theory of Overloading. ACM Transactions on1074

Programming Languages and Systems, 27(6):1216–1269, November 2005.1075

86 Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.1076

System F with Type Equality Coercions. In George Necula, editor, Proceedings of the1077

International Workshop on Types in Languages Design and Implementation (TLDI’07), pages1078

53–66, Nice, France, January 2007. ACM.1079

87 The Rust Project Developers. The rustonomicon, n.d. https://doc.rust-lang.org/nomicon/.1080

88 Laurence Tratt. Domain Specific Language Implementation Via Compile-Time Meta-1081

Programming. ACM Transactions on Programming Languages and Systems, 30(6):31:1–31:40,1082

October 2008.1083

89 David A. Turner. Miranda: A Non-Strict Functional Language with Polymorphic Types. In1084

Jean-Pierre Jouannaud, editor, Proceedings of the 1st International Conference on Functional1085

Programming Languages and Computer Architecture (FPCA’85), LNCS 201, pages 1–16,1086

Nancy, France, September 1985. Springer.1087

90 Aaron Turon. Shipping Specialization: A Story of Soundness. Blog Post, July 2017. https:1088

//aturon.github.io/blog/2017/07/08/lifetime-dispatch/.1089

91 David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete Guide. Addison-1090

Wesley, November 2002.1091

92 Philip Wadler. Linear Types Can Change the World! In Manfred Broy and Cliff B. Jones,1092

editors, Proceedings of the 2nd Working Conference on Programming Concepts and Methods1093

(IFIP’90), pages 561–582, Sea of Galilee, Israel, April 1990. North-Holland.1094

93 Philip Wadler and Stephen Blott. How to Make Ad-Hoc Polymorphism Less Ad-Hoc. In1095

Proceedings of the 16th Symposium on Principles of Programming Languages (POPL’88),1096

pages 60–76, Austin, TX, USA, January 1988. ACM.1097

94 Stephen Weeks. Whole-program compilation in MLton. In Andrew Kennedy and François1098

Pottier, editors, Proceedings of the Workshop on ML (ML’06), page 1, Portland, OR, USA,1099

2006. ACM.1100

95 Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with Conditional Branches.1101

ACM Transactions on Programming Languages and Systems, 13(2):181–210, April 1991.1102

96 Mark N. Wegman and Frank Kenneth Zadeck. Constant Propagation with Conditional1103

Branches. In Mary S. Van DEusen, Zvi Galil, and Brian K. Reid, editors, Proceedings of the1104

 https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
 https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
 https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://doc.rust-lang.org/nomicon/
https://aturon.github.io/blog/2017/07/08/lifetime-dispatch/
https://aturon.github.io/blog/2017/07/08/lifetime-dispatch/
https://aturon.github.io/blog/2017/07/08/lifetime-dispatch/

Anonymous author(s) 23:31

12th Symposium on Principles of Programming Languages (POPL’85), pages 291–299, New1105

Orleans, LA, USA, January 1985. ACM.1106

97 Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders1107

Wesslén. Experimentation in Software Engineering. Springer, 2012.1108

98 Kaizhong Zhang and Dennis Shasha. Simple Fast Algorithms for the Editing Distance between1109

Trees and Related Problems. Journal on Computing, 18(6):1245–1262, December 1989.1110

CVIT 2016

	1 Introduction
	2 The Rust Programming Language
	3 Meta-Monomorphizing Specializations by Examples
	3.1 First-Order Programs with Equality Bounds
	3.2 Predicate Polymorphism with Trait Bounds
	3.3 Polymorphic - and -type Constructors
	3.4 Lifetime Polymorphism with Reference Types
	3.5 Higher-Ranked Polymorphism with Higher-Order Functions
	3.6 Limitations
	3.7 Implementation Details

	4 Validation
	5 Threats to Validity
	6 Related Work
	7 Conclusion

