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Sink or SWIM: Tackling Real-Time ASR at Scale
Federico Bruzzone , Walter Cazzola , Matteo Brancaleoni and Dario Pellegrino

Abstract—Real-time automatic speech recognition systems are
increasingly integrated into interactive applications, from voice
assistants to live transcription services. However, scaling these
systems to support multiple concurrent clients while maintaining
low latency and high accuracy remains a major challenge. In
this work, we present SWIM, a novel real-time ASR system built
on top of OpenAI’s Whisper model that enables true model-
level parallelization for scalable, multilingual transcription. SWIM
supports multiple concurrent audio streams without modifying
the underlying model. It introduces a buffer merging strategy that
maintains transcription fidelity while ensuring efficient resource
usage. We evaluate SWIM in multi-client settings—scaling up to 20
concurrent users—and show that it delivers accurate real-time
transcriptions in English, Italian, and Spanish, while maintaining
low latency and high throughput. While Whisper-Streaming
achieves a word error rate of approximately 8.2% with an
average delay of approximately 3.4 s in a single-client, English-
only setting, SWIM extends this capability to multilingual, multi-
client environments. It maintains comparable accuracy with sig-
nificantly lower delay—around 2.4 s with 5 clients—and continues
to scale effectively up to 20 concurrent clients without degrading
transcription quality and increasing overall throughput. Our
approach advances scalable ASR by improving robustness and
efficiency in dynamic, multi-user environments.

Index Terms—Automatic Speech Recognition, Whisper, Multi-
client ASR Systems, Real-time ASR Systems.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) systems1 are now
ubiquitous in everyday applications [1, 2, 3, 4], ranging

from voice assistants for human-computer interaction [5, 6] to
transcription services [7, 8]. In recent years, ASR has advanced
significantly through deep learning [9, 10, 11, 12]. The field
has shifted from traditional cascaded architectures [13, 14],
which separate the recognition pipeline into distinct stages,
to end-to-end models [15], where a single neural network
jointly learns the entire task [16, 17]. Whisper, developed
by OpenAI, is a notable transformer-based end-to-end ASR
model [18]. It represents a well-balanced end-to-end solution
in the ASR landscape, offering a trade-off between computa-
tional cost, speed, and transcription accuracy, as demonstrated
by Radford et al. [18].

ASR Systems and Their Challenges. Contemporary ASR
systems, particularly those based on conversational AI, are
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1From here on, we use the term system to refer specifically to a software
system, typically in a client-server setup, where the client is the user and the
server hosts the ASR model.

generally characterized along two dimensions: single-client
systems [9, 19], which serve a single user at a time, and multi-
client systems, which concurrently serve multiple users [20,
21]. These architectures are further classified based on deploy-
ment, into local systems, which operate on the user’s device,
and remote systems, which are hosted on servers and accessed
via network connections. Recent trends in ASR research have
increasingly focused on real-time applications, where both low
latency and high throughput are critical [1, 22, 23, 24]. In
these settings, the system must generate responses within a few
seconds to meet users’ expectations for immediate feedback.
Although local ASR systems offer enhanced privacy [25, 26],
their performance is inherently constrained by the limited
computational power and memory of user devices [27], as well
as their susceptibility to adverse environmental conditions. For
example, in audio-only communication channels such as voice
over internet protocol (VoIP) and telephone calls, audio signals
are typically routed to centralized remote ASR systems that
benefit from greater computational resources and cloud-based
services [28, 29].

Single-client vs. Multi-client Systems. Furthermore, single-
client systems are not without limitations [30]. E.g.,
Whispy [31] and Whisper-Streaming [32] lack model-level
parallelization, limiting their scalability in multi-audio streams
scenarios. In contrast, remote ASR systems can leverage
greater computational resources and memory, enabling effi-
cient scaling to support multiple clients concurrently [33].
Such systems benefit from optimized resource allocation,
reduced latency via parallel processing, and consistent per-
formance across diverse user populations [34, 35].

Nevertheless, scaling real-time ASR to handle many concur-
rent clients remains a major challenge. This is largely due to
the computational demands of real-time models, which must
deliver low-latency transcriptions without losing accuracy—a
critical requirement in applications like voice assistants [36],
live captioning [37], and safety-critical domains such as
healthcare [38, 39, 40] or legal proceedings [41, 42].

Contributions. In this paper, we introduce SWIM (Serve
Whisper In Multi-client), a novel real-time ASR system built
on top of the Whisper model, designed to serve multiple
clients simultaneously while maintaining low latency and
high throughput. SWIM prioritizes scalability, enabling efficient
handling of multilingual audio streams under varying work-
loads. Unlike Whisper-Streaming [32] and Whispy [31],
SWIM achieves true model-level parallelization, ensuring sta-
ble performance even under high-load conditions. Through
empirical evaluation, we demonstrate that a single Whisper
instance running SWIM can transcribe multiple multi-lingual
audio streams in parallel, maintaining optimal accuracy in
real-time scenarios. Our evaluation spans various multi-client
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settings (e.g., 5, 10, and 20 concurrent users) and includes:
(i) assessment of real-time playback performance, in terms
of delay with respect to wall-clock time, (ii) measurement
of transcription quality using word error rate and accuracy
metrics, and (iii) evaluation of the system’s handling of
multilingual inputs, including English, Italian, and Spanish.
This work tackles scalability challenges in real-time ASR,
advancing the state of the art in multi-client speech recognition
for dynamic environments.

Our main contributions are:
1) a scalable real-time ASR system enabling model-level

parallelization for concurrent multilingual transcription;
2) a buffer merging strategy that maintains transcription

accuracy across clients without added latency; and
3) a demonstration of Whisper’s unmodified ability to han-

dle multiple parallel audio streams from diverse sources
effectively.

The remainder of the paper is organized as follows. Sect. II
provides background. Sect. III reviews real-time ASR systems,
focusing on Whisper and its limitations; Sect. IV details the
design of SWIM, and Sect. V presents our evaluation, and
Sect. VII concludes the paper.

II. BACKGROUND

We provide background on speech-to-text ASR models, the
Whisper Model, and the Whisper-Streaming system.

Speech-to-Text ASR Models. ASR converts spoken lan-
guage into written text using machine learning. Traditionally,
ASR systems have relied on hidden Markov models [43, 14]
and Gaussian mixture models [13], which dominated the field
for many years. ASR models vary from high-performance,
heavy systems designed for offline processing [16, 44] to
lightweight versions optimized for real-time use on limited
hardware [45, 46]. These differences shape key architectural
and optimization decisions.

Traditional ASR models often used a cascaded architec-
ture [13, 14], where separately trained components process
speech sequentially. In contrast, end-to-end models [15] typ-
ically integrate these stages into a single neural network
trained jointly [16, 17], simplifying the pipeline and often
improving performance, especially with large datasets [16, 17].
A prominent example is the transformer architecture [16, 47],
which replaces recurrent and convolutional neural networks
with self-attention mechanisms. Transformers enable high
parallelization and achieve state-of-the-art results across many
ASR tasks [16, 48, 49]. ASR models are commonly trained
on large-scale datasets such as LibriSpeech [50]—available in
variants like 1) LibriSpeech Long [51] and 2) Multilingual
LibriSpeech [52] —as well as Fleurs [53]. These datasets
provide thousands of hours of transcribed speech, supporting
robust model training.

Performance is typically measured by word error rate
(WER) [54, 55, 56], character error rate (CER) [57, 58, 59],
and sentence error rate (SER) [60, 61], which quantify tran-
scription accuracy using normalized Levenshtein distance [62,
63] between predicted and reference texts. Synchronized tran-
scription of audio streams is crucial—especially for subtitles,

captions, or live transcription [64, 65]. To address this, ASR
systems segment audio into temporal segments transcribed
individually. This timestamp-aligning2 process [66, 67] aligns
transcriptions with the audio, enabling extraction of precise
temporal segments.

Whisper Model. Whisper [18] is an open-source ASR
model developed by OpenAI. It is trained on a large corpus
of multilingual and multitask datasets, enabling it to perform
multilingual speech recognition. Whisper is a prime example
of an end-to-end ASR model based on the Transformer ar-
chitecture. Unlike traditional ASR models, Whisper processes
raw audio and uses a sequence-to-sequence transformer model
to generate text. Being an end-to-end model, the Whisper
consists of an encoder and a decoder architecture. The former
processes the audio input into a dense representation, while
the latter translates the representation into a sequence of text
tokens using cross-attention mechanisms. Beyond speech-to-
text transcription, Whisper demonstrates high proficiency in
additional tasks, including: 1) speech translation, 2) language
identification and 3) voice activity detection. At inference
time, a list of start and end timestamps can be provided to
specify audio segments, bypassing voice activity detection by
assuming these intervals contain speech. Whisper is available
in several sizes and variants—e.g., tiny, small, medium,
large-v3. Recently, a turbo version of the pre-trained
large-v3, pruned and fine-tuned, was introduced, offering
a 5–8× speedup with minimal accuracy loss.

III. STATE-OF-THE-ART

Real-time Whisper. Faster-whisper3 is a reimplementa-
tion of Whisper built on top of CTranslate2.4 It has been
widely adopted by several real-time ASR systems, including
Whispy [31] and Whisper-Streaming [32].
Whisper-Streaming enables real-time speech transcrip-

tion and translation by using an incremental buffer and local
agreement mechanism to minimize latency and maximize
throughput [32]. Whispy, on the other hand, is designed to
support real-time use of Whisper by employing Levenshtein
distance to align overlapping transcriptions and select the most
accurate segments [31]. Despite adopting different approaches,
both projects rely on faster-whisper as the Whisper
implementation, minimizing latency and offering a valuable
contribution to the field. However, Whisper—including its
variants—is GPU bound and introduce big bottlenecks when
it comes to real-time scenarios and parallelization. Other
projects have proposed solutions for these issues, such as
Whisper-T [68]. Whisper-T aims to reduce Whisper’s GPU
load and power consumption through lightweight decoding
strategies, beam pruning, and CPU/GPU pipelining. Never-
theless, the project remains limited to a local environment,
processing only one audio stream at a time. Achieving sig-
nificant scalability and parallelization for Whisper remains
an open challenge and is essential for building remote, multi-
client ASR systems.

2Also known as temporal-, forced-, or word-level alignment.
3https://github.com/guillaumekln/faster-whisper
4https://github.com/OpenNMT/CTranslate2
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Limitations of the State-of-the-art. The goal is to develop
a system capable of handling multiple requests while run-
ning on relatively modest hardware (e.g., a few GPUs or
even a single GPU). Achieving this presents several chal-
lenges, including: 1) most existing Whisper implementa-
tions (except faster-whisper) exhibit significant perfor-
mance degradation in real-time scenarios, and 2) the ab-
sence of model-level parallelization support. Several Whisper
implementations, such as: insanely-fast-whisper5 and
WhisperX [69] (which builds upon faster-whisper), are
not suitable for real-time applications due to latency issues.
The former performs poorly on short audio clips (e.g., 15–30
seconds) and is not designed for processing raw audio buffers.
While it includes a diarization6 feature, the latter inherits the
limitations of faster-whisper, making it slower than its base
implementation. Moreover, Whisper and its variants are not
inherently designed to process multiple audio streams con-
currently, primarily due to two reasons: 1) although available
VRAM may support multiple model instances, GPU compute
resources are quickly exhausted during inference, and 2) when
multiple Whisper instances are launched, only one can utilize
GPU computation at a time, forcing the others to wait—
resulting in serialized audio processing. A high-cost solution,
feasible for large companies, involves horizontal scaling with
a dedicated GPU for each Whisper instance. A more af-
fordable alternative is asynchronous processing on a single
GPU, though this is poorly supported in faster-whisper
and similar implementations.

IV. A DEEP DIVE INTO SWIM

SWIM is a multi-client, real-time ASR system built on top of
the Whisper model. It is designed to: 1) concurrently process
multiple multilingual real-time audio streams, 2) maintain
low latency and high throughput, and 3) deliver accurate
transcriptions for all clients.

A. Overview

The actors in SWIM’s architecture are illustrated in Fig. 1.
The system consists of multiple clients ❶, each streaming
audio to a dedicated service ❷. Each service is responsible
for two main tasks: 1) building an audio buffer from incoming
audio chunks and submitting it to the shared ASR model ❸
for transcription, and 2) maintaining a hypothesis buffer ❽,
which stores intermediate transcriptions and applies a local
agreement strategy to ensure reliability. The shared ASR model
assembles clips from all audio buffers ❺, passes them to a
faster-whisper instance ❻ for inference, and relays the
transcriptions to the result dispatcher ❼.

B. Clients

SWIM is designed to be a multi-client ASR system. It can
be deployed on a remote server or adapted for local use
without the client-server setup—e.g., handling multiple audio

5https://github.com/Vaibhavs10/insanely-fast-whisper
6Diarization refers to segmenting an audio stream by speaker identity,

allowing the system to identify who spoke when.

sources on a single machine. Clients, shown in Fig. 1-❶, send
audio streams to the system. These can be any audio-capturing
devices, such as smartphones, computers, or single-board de-
velopment kits like Raspberry Pi or Arduino. Client imple-
mentations emphasize polyglotism and platform agnosticism,
supporting any programming language compatible with the
gRPC protocol.7 Clients receive transcriptions of their audio
streams via a bidirectional communication channel, allowing
the server to return transcriptions and other related informa-
tion. Clients must send audio streams sampled at 16 kHz, the
rate required by Whisper and widely adopted in modern ASR
systems. Knowing this sampling rate is essential for the system
to effectively process audio buffers—such as chunking based
on timestamps or synchronizing local transcriptions.

C. Services

As illustrated in Fig. 1-❷, services handle the audio streams
sent by clients. Each service is dedicated to a single gRPC
client and constructs an audio buffer from the incoming
chunks. These audio buffers—shown in , , and in
Fig. 1-❷—are continuously forwarded to the Whisper model
for processing (indicated by arrows from ❷ to ❸) to main-
tain real-time performance. To reduce processing overhead,
the audio buffer is kept as short as possible (typically 10–
15 seconds). If the buffer exceeds its maximum duration
(e.g., 15 seconds), the oldest content is trimmed. This trim-
ming applies only to the already transcribed portion of the
buffer, which has been marked as confirmed by the lo-
cal agreement mechanism within the hypothesis buffer8 (see
Sect. IV-E). Thanks to the word-level timestamp alignment
provided by faster-whisper, the buffer can be segmented
at precise word boundaries, preventing word splits. Each
segment—depicted in Fig. 1-❼—is a continuous sequence of
words with start/end timestamps, along with metadata such
as full text and detected language. This design facilitates
operations like overlap resolution, insertion, and deletion in
the hypothesis buffer (❽-Fig. 1). Specifically, the buffer tail
(❹-Fig. 1) is truncated at the timestamp of the first confirmed
word that occurs before the midpoint of the buffer duration,
i.e., ℓ < B

2 , where B is the total buffer length (e.g., 15
seconds). As shown in Fig. 1-❷ (Service 1), the confirmed
portion of the hypothesis buffer is marked in yellow and
green while the unconfirmed portion is shown in red .
When a new text segment is confirmed (as in Service 1), it is
marked green and sent back to the client, along with its start
and end timestamps. Details on the local agreement policy can
be found in Sect. IV-E.

D. Shared ASR Model

Shared Audio Buffer. As we have already mentioned, SWIM
is designed to be a multi-client ASR system. However, each
service does not have a dedicated instance of the Whisper

7https://grpc.io
8The hypothesis buffer (Fig. 1-❽) stores transcriptions from the shared

model’s result dispatcher (Fig. 1-❼). It functions by comparing the latest
confirmed transcription with the current one.
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https://grpc.io
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Clients ❶

Python Client

gRPC
Stub

Java Client

gRPC
Stub

C++ Client

gRPC
Stub

Real-Time ASR System

Services / APIs ❷

Service 1

Audio Buffer ❹

. . .

Hypothesis Buffer ❽

Local Agreement
N − 1 Hi, Im fine

N Hi, Im fine, thanks

N + 1 Hi, Im fine, thanks. ...

Service 2

Audio Buffer ❹

. . .

Hypothesis Buffer ❽

Service 3

Audio Buffer ❹

. . .

Hypothesis Buffer ❽

Shared ASR Model ❸

Shared Audio Buffer ❺

. . . .

clip 1 clip 2 clip 3

Faster Whisper Model ❻

Transcribe
Audio

Segment
Generator

Tag
Segments

[Audio,[(Id,{start,end})]]

Result Dispatcher ❼

Id 1 Hi, Im fine, thanks. Can...

word-level timestamps more info

Id 2 O tempo está feio!

Id 3 Vorrei prenotare due...[start,end,text]

Figure 1: Architecture of SWIM. Multiple clients ❶ stream audio to dedicated services ❷, which forward data to a shared ASR
model ❸ for parallel processing.

model. Instead, SWIM is based on a shared ASR model9

Fig. 1-❸, which, as the name suggests, is shared across all ser-
vices ❷. To function properly and to enable parallel processing
of multiple audio streams, the shared model is designed to
operate using a single shared audio buffer Fig. 1-❺, which
is likewise shared among all services. The shared ASR model
is responsible of orchestrating the parallel progressing of the
audio streams, by continuously: 1) gathering the services
audio buffers into a shared audio buffer, 2) processing them
in parallel using a faster-whisper instance Fig. 1-❻, and
3) tagging and sending the text results back to the services
(see Result Dispatcher Fig. 1-❼).

The shared audio buffer is a monolithic raw buffer built on
top of the individual audio buffers managed by each dedicated
service. Its internal structure enables the system to track which
portions of the buffer belong to each client. Alongside the
audio buffer, the system maintains a list of pairs consisting of:
1) the unique identifier of the associated service, and 2) the
clip timestamps marking the start and end of the corresponding
service’s audio segment. The shared audio buffer is populated
by the shared ASR model when all the services are ready
to process their audio buffer—that is, a progressing request
(e.g., a novel audio chunk) has been received from the client.
Several policy mechanisms to avoid deadlocks could be easily

9When we refer to the Shared ASR model or Shared model, we mean
an instance of a custom object that wraps the faster-whisper model and
provides a set of methods to interact with it by allowing it to be used in a
multi-client environment.

implemented to handle the situation when one or more services
are not ready to process their audio buffer. For instance, the
system could wait for a certain amount of time (e.g., range
from 1 to 2 seconds) for a service to be ready. When unready,
the system could skip it and proceed regardless with two
behaviors: 1) skipping the service, but pausing or kicking it
out from the system, and 2) skipping the service only for the
current transcription, but keeping it active for the next ones.

Each service operates autonomously and processes its own
audio stream independently, without interference from other
services. As a result, synchronization issues are implicitly
managed by the system architecture. A core assumption of
SWIM is that the audio stream is persistent and transmitted
continuously in fixed-duration chunks, with each chunk having
a duration D ∈ (0, 1]. Consequently, as Fig. 2 illustrates,
there always exist two consecutive audio chunks, denoted
by (D1, T1) and (D2, T2), where Dj represents the audio
chunk received by client Cj at time Tj . Let (T, i) ←
(max{T1, T2}, argmaxi∈{0,1}{Ti}), then the following in-
equality holds:

T − T|i−1| − ε ≤ 1s

where:
1) T|i−1| is the timestamp of the last audio chunk received

by client C|i−1|, and
2) ε = o(1) represent the network latency of T .
This architectural assumption, as Fig. 2 depicts, ensures that

the maximum delay incurred while waiting for all services to
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be ready is bounded by

max(0, 1− Tp) < 1s,

where Tp is the processing time of the transcriptions. In-
tuitively, this represents the worst-case scenario where one
service has to wait for the other to finish processing and
sending its audio chunk.

t

T
(j−1)
1 T

(j−1)
2 T

(j)
1 T

(j)
2 T

(j+1)
1 T

(j+1)
2

≤ 1s+ ε

Tp

< 1s

Figure 2: Audio chunk processing time diagram.
The outer maximum with zero ensures that we do not consider
negative delays: if the shared ASR takes longer than 1 second
to process all active services, the next chunk will already
have arrived for every connected services, so there’s no extra
waiting time.

Faster Whisper Model. In the adopted architecture, the
entire shared audio buffer is passed to the model as a sin-
gle, continuous waveform. Individual client contributions are
identified through a list of uniquely associated identifiers and
temporal intervals defined by a pair (start, end)—denoted
as Timestamp in Fig. 1 (in the path from ❺ to ❻).

Inference is then performed on the entire shared buffer,
based on the artificially defined clips—that is, the shared audio
buffer divides the audio stream into clips, each associated
with a unique client identifier. For each registered clip—
denoted by , , colors in Fig. 1-❺— the system extracts a
corresponding transcription segment. As briefly mentioned in
Sect. IV-C, the length of the service audio buffer should range
between 10 and 15 seconds. This design choice is motivated
by multiple, complementary factors. First, it alleviates the
computational load by limiting the input size processed at each
inference step. Second, and more importantly, clips that are
too long—exceeding approximately 30 seconds are cut off the
excessive part of the clip.

Result Dispatcher. After inference, the text segments are
returned in the exact order in which they were processed.
With this design choice, the system can easily associate each
segment with the corresponding client identifier. Before return-
ing the results, the system adjusts the segment timestamps—
including word-level timings—so they align with the relative
time of the original service audio buffer. This adjustment is
necessary because the timestamps are relative to the shared
audio buffer, not to the service-specific audio buffer. Finally,
the segment results are forwarded to the corresponding service,
which processes the segment and delivers the transcription
back to the client according to the previously described
mechanism (on the arrow from ❼ to ❽).

E. Hypothesis Buffer with Local Agreement

SWIM uses an adapted hypothesis buffer, inspired by the
mechanism introduced in Whisper-Streaming [32], which
implements a local agreement strategy to ensure the reliability
of the transcriptions produced by the Whisper model. Our
implementation employs a similarity metric [31, 62, 70] rather

than strict token equality to govern the behavior of the hypoth-
esis buffer. SWIM uses the QRatio,10 also known as normalized
Indel distance, introduced by Bachmann, defined as:

QRatio(s1, s2) =

(
1− d(s1, s2)

|s1|+ |s2|

)
× 100,

where d(s1, s2) is the Indel distance [71, 72] between the two
strings s1 and s2—a variant of the Levenshtein distance [73]
where substitutions have a cost of two—, and |s1| and |s2|
are the lengths of the two strings.

The motivation behind these changes is twofold: 1) to ac-
count for punctuation, apostrophes, or minor discrepancies—
whether introduced by Whisper itself or by individual
services—and 2) to populate the local agreement list (a buffer
of words along with timestamps (start, end, text)) and
retain content that may have been slightly altered by the model.

When a new segment is received, the system replaces the
previous segment with the new one, inserting the first n con-
secutive tokens whose similarity ratio exceeds or equals 98%
compared to the corresponding n tokens from the previous
segment. The purpose of this insertion mechanism is to find
overlaps between the two segments, which helps hypothesis
buffer with being more accurate and reliable. The local agree-
ment mechanism enables token confirmation by comparing
the new segment against the previous one, using a token-by-
token equality check. By setting a confirmation threshold at
a 95% similarity ratio, the mechanism accepts variations such
as added or removed punctuation without wasting additional
iterations, while maintaining high transcription accuracy. An
illustrative example is shown in the local agreement box under
the first ❽ of Fig. 1.

If no confirmation occurs via the local agreement policy,
a fallback strategy is triggered before proceeding to the next
iteration without any confirmation. The system takes the first
half of the previous transcription—based on word count—
and generates all possible ordered prefixes. These prefixes
are then compared to those of the new transcription, but only
among tokens whose end timestamps fall within the duration
of the selected half of the previous segment. This constraint
ensures that matching is confined to the relevant portion of
the new transcription, preventing premature confirmation of
content beyond the midpoint of the previous segment. The
prefix with the highest similarity score is selected, and all its
constituent tokens are confirmed individually, as confirmation
is performed on a token-by-token basis, adopting the same
similarity metric as in the local agreement. This fallback mech-
anism helps recover from shifts in phrasing or tokenization that
can put the service in a never confirming state until the service
audio buffer gets trimmed.

V. EVALUATION

The evaluation of SWIM utilizes four datasets: the Google
Fleurs dataset [53], the Multilingual LibriSpeech dataset [52],
the LibriSpeech-Long dataset [51], and the Italian Parkinson’s
Voice dataset [74, 75, 76]. We use large-v3-turbo, a

10Later in the paper we refer to this QRatio metric also as similarity metric,
similarity ratio, or similarity score.
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pruned and fine-tuned version of the pre-trained large-v3
model, which offers significant improvements in efficiency. A
replication package for the experiments is available at:

https://doi.org/10.5281/zenodo.15856828

A. Datasets

Description. The Google Fleurs dataset offers a diverse
multilingual benchmark with recordings from 102 languages,
making it ideal for evaluating SWIM’s robustness across a wide
range of speech types. The Multilingual LibriSpeech dataset
consists of read audiobooks in 8 European languages, sup-
porting evaluation in moderately resourced multilingual set-
tings. The LibriSpeech-Long dataset extends LibriSpeech by
including longer audio segments, testing the model’s ability for
long-range temporal modeling. Finally, the Italian Parkinson’s
Voice dataset contains Italian speech samples from Parkinson’s
disease patients and control subjects, enabling assessment of
SWIM in pathological speech recognition scenarios, which is
critical for evaluating performance on impaired speech.

Preparation. We preprocess all datasets to align audio
files precisely with their transcriptions. Using the Whisper
large-v3 model [18], we obtain word-level ASR alignments
that map audio to text accurately. This precise word-level
timestamping is essential for evaluating SWIM in real-time ASR
scenarios requiring tight audio-text synchronization.

We chose the Whisper large-v3 model for its balance of
latency, accuracy, and speed, making it well suited for align-
ment. Its state-of-the-art performance also provides a strong
baseline for evaluating SWIM, given our method’s constraints
and the large-v3 turbo variant’s limitations.

The prepared datasets support evaluation of SWIM across
multiple scenarios: 1) the Multilingual LibriSpeech and Google
Fleurs datasets assess multilingual concurrent performance,
with average audio lengths of approximately 15 and 10 sec-
onds, respectively; 2) the LibriSpeech-Long dataset evaluates
long-form audio processing, with an average duration around 5
minutes; and 3) the Italian Parkinson’s Voice dataset offers an
intermediate scenario, with audio segments around 1 minute
long, featuring recordings used for disease diagnosis and
including specific Italian regional accents.

B. Experimental Setup

We conduct our experiments on a server equipped with:
1) an NVIDIA RTX 6000 Ada Generation GPU with 48GB
of VRAM, 2) Intel © Xeon © Gold 5412U CPU with 24 cores
and 48 threads, 3) 128GB of RAM, and 4) the operating
system is Ubuntu 22.04 LTS.

C. Experiments and Results

Delay Distribution Plots. Figures 3a and 3b show the
delay distribution by language under different client loads,
using chunk durations of 1.0 s and 0.5 s, respectively. Each
box plot group is labeled by dataset on the x-axis, with
delay (in seconds) on the y-axis. While delays generally
increase linearly with more concurrent clients, the plots are

useful for identifying the threshold where performance starts to
degrade. This insight helps determine when to switch to offline
transcription or scale SWIM by allocating additional resources.

The delays are computed as the mean difference between
the timestamp of each confirmed transcription segment and
its expected delay from the start of the audio stream. In
the plots, colors represent different numbers of concurrent
clients. As expected, both plots show an approximately linear
increase in delay as the number of clients grows, due to
increased contention for model inference. Interestingly, with
fewer clients, shorter chunks (0.5 s) yield lower delays by
enabling more frequent updates and faster reaction times.
However, as concurrency increases, the 1.0 s chunk configura-
tion begins to outperform the 0.5 s one, likely due to reduced
overhead from less frequent processing.

These results highlight the importance of tuning the chunk
duration parameter for optimal performance. Shorter chunks
(0.5 s) are more responsive in low-load scenarios (up to 15
clients), reducing delay by approximately 11% compared to
1.0 s chunks. In contrast, for higher loads (more than 15
clients), 1.0 s chunks yield about 8% lower delay, due to
reduced processing overhead. Overall, this behavior allows
SWIM to dynamically adapt to workload conditions, balancing
throughput and latency as the number of clients changes.

WER Distribution Plots. Figures 3c and 3d present the
WER distribution per language for different numbers of
concurrent clients, using chunk durations of 1.0 s and 0.5 s,
respectively. Each group of box plots is labeled with the
corresponding dataset on the x-axis, while the y-axis shows
the word error rate. As expected, the WER remains relatively
stable across varying concurrency levels, with only minor fluc-
tuations. This consistency suggests that transcription quality
remains largely unaffected by the number of parallel audio
streams. The WER is computed as:

WER =
S +D + I

N

where S is the number of substitutions, D the number of
deletions, I the number of insertions, and N the total number
of words in the reference transcription. As expected, WER
remains relatively stable across different levels of concurrency,
with only minor fluctuations. This behavior suggests that
system accuracy is more influenced by architectural choices—
particularly the use of a shared buffer—than by the number of
concurrent requests. Notably, SWIM consistently maintains low
WER values in multilingual settings, highlighting one of its
key strengths. While chunk duration has some effect on WER,
the differences are marginal.

The most notable deviation occurs in the Italian Parkinson’s
Voice dataset, where the WER is higher and more variable for
5 concurrent clients. This can be attributed to the presence
of samples where speakers articulate isolated words with long
pauses rather than continuous speech. In such cases, when
processing latency is low, the limited context can lead to
punctuation mistakes—such as incorrect or missing sentence
boundaries—which in turn affect casing. These errors dispro-
portionately inflate the WER metric.

https://doi.org/10.5281/zenodo.15856828
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Figure 3: Evaluation results with different chunk durations using box plots.
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Figure 4: The similarity score distribution per client across all datasets using boxen plots.

Although WER is the de facto standard for evaluating ASR
accuracy, it does not always reliably capture performance
in real-time scenarios. In particular, it penalizes formatting
issues—such as punctuation and casing—even when the tran-
scription remains semantically accurate.

Nevertheless, SWIM maintains low WER across datasets and
languages, demonstrating its effectiveness with multilingual
inputs and high transcription accuracy.

Similarity Distribution Plots. Figures 4a and 4b display the
similarity score distribution by number of concurrent clients
across all datasets. Scores are shown as percentages and
visualized using boxen plots,11 which provide a more detailed
view of the data distribution.

The expected outcome is that similarity scores—computed
using the QRatio metric—will be higher than corresponding
WER values, as WER penalizes formatting inconsistencies
(e.g., punctuation and casing) that do not impact semantic
correctness. Both similarity scores are computed using the
previously introduced QRatio metric. For each response, we
extract the corresponding segment of the reference transcript
using its start and end timestamps. We then calculate similarity
between this reference segment and the generated response
text. The strict similarity score uses the standard QRatio,
while the lighter similarity score ignores differences in punc-
tuation and casing. As expected, the strict similarity is slightly
lower than the lighter score, but the difference is small,
indicating that the system maintains strong semantic accuracy
even under stringent comparison criteria.

Interestingly, similar to the trends seen in Figures 3c and 3d,
similarity scores tend to improve as the number of concurrent
clients increases. This is expected because longer processing
times allow more audio to accumulate in each dedicated
service buffer, giving the model more context when inferring
each clip within the shared buffer.

Finally, we observe that both similarity scores remain rel-
atively stable across datasets, with only minor variations. As
shown in Fig. 4, the median similarity scores exceed 96%
for the strict metric and 98% for the lighter one, regardless
of the number of concurrent clients. This indicates that SWIM

11Boxen plots extend traditional box plots by adding additional boxes to
better capture the distribution’s shape.

consistently maintains high semantic accuracy across diverse
datasets and languages—a crucial requirement for real-time
ASR systems.

Linguistic Delay Distribution Plots. Figure 5a shows the
delay distribution per language for the Google Fleurs dataset,
while Figure 5b presents the same for the Multilingual Lib-
riSpeech dataset. Both use violin plots, which combine box
plots with kernel density estimation to visualize delay distri-
butions. Thanks to SWIM’s client synchronization mechanism,
delays are expected to remain consistent across languages, as
they are primarily influenced by model processing time.

The most notable observation is that the distributions are
similar across languages, with only minor variations in the me-
dian delay. Moreover, the relatively narrow spread of the distri-
butions denotes stable and predictable latency behavior, which
is crucial for real-time applications. These results highlight
SWIM generalizes effectively across diverse linguistic contexts
without sacrificing responsiveness, underscoring its potential
utility in multilingual speech processing environments.

Linguistic WER Distribution Plots. Figures 6a and 6b
show WER distribution across languages in the same settings.

As expected, WER is slightly influenced by the linguistic
characteristics of each language. English, for instance, typi-
cally yields the lowest WER, while languages with diacritics
or complex orthographic rules may show higher error rates.

Nonetheless, the plots reveal that WER distributions remain
consistent across languages, with only minor differences in
median values. The small variations can be attributed to
distribution tails and outliers. This indicates that languages rich
in diacritics or with complex orthographies do not significantly
degrade SWIM’s transcription accuracy.

Unlike whisper-streaming, which already demon-
strates high accuracy, SWIM maintains comparable WER
across languages—including those with complex phonetic
structures—even as the number of concurrent clients increases.

Hypothesis vs. Confirmation Delay Plot. Figure 7 shows
the mean delays—visualized as a bar plot—for both hy-
pothesis and confirmation responses on the Multilingual Lib-
riSpeech dataset, using a fixed chunk duration of 1.0 s.
The purpose of this plot is to illustrate that, beyond
confirmed responses—which represent finalized, immutable



9

English German Italian French
0

1

2

3

4

5

6

7
de

la
y 

(s
)

(a) Google Fleurs dataset
Polish Dutch Spanish French German Italian Portuguese

0

2

4

6

8

de
la

y 
(s

)

(b) Multilingual LibriSpeech dataset
Figure 5: Delay per language across the Multilingual LibriSpeech dataset and Google Fleurs dataset using violin plots.

English German Italian French
0.0

0.2

0.4

0.6

0.8

1.0

we
r (

%
)

(a) Google Fleurs dataset
Polish Dutch Spanish French German Italian Portuguese

0.0

0.2

0.4

0.6

0.8

we
r (

%
)

(b) Multilingual LibriSpeech dataset
Figure 6: WER per language across the Multilingual LibriSpeech dataset and Google Fleurs dataset using violin plots.

transcriptions—hypothesis responses can provide preliminary
transcriptions earlier in the pipeline. Thanks to the local agree-
ment mechanism, hypothesis responses serve as early approx-
imations of the final confirmed outputs. These intermediate
results are often sufficiently accurate to be used for immediate
feedback to users. This distinction is especially valuable in
real-time applications where low-latency feedback is critical,
such as live captioning or when supplying incremental input
to large language models in interactive agent systems.

D. Concluding Remarks

Whisper-Streaming [32], in an English-only setting with
a single fixed client, achieves a WER of approximately
8.2% and an average transcription delay of about 3.4 sec-
onds. In comparison, SWIM scales to 5 concurrent clients
while maintaining a similar WER (see Tables 3c and 3d
on the LibriSpeech-Long dataset) and reducing average de-
lay to roughly 2.4 seconds. Even at 15 concurrent clients,
SWIM sustains stable latency and accuracy comparable to
Whisper-Streaming. Furthermore, SWIM maintains low delay
and high transcription accuracy—measured by WER and sim-
ilarity scores—across diverse datasets and multilingual scenar-
ios with up to 20 concurrent clients. These results demonstrate
SWIM’s effective scalability, significantly increasing throughput
without sacrificing transcription quality.

VI. THREATS TO VALIDITY

In our discussion, we follow Wohlin et al. [77]’s taxonomy.

A. Construct Validity

Transcription Quality Metrics. Our evaluation also relies
on standard ASR metrics such as WER to assess transcription

quality. However, these metrics may not fully reflect the
nuances of real-time multilingual transcription, especially in
cases involving code-switching, domain-specific vocabulary,
or varied audio conditions across clients.

Real-Time Performance Metrics. We use latency and
throughput to evaluate real-time performance. However, the
definition of “real-time” varies by application. Our processing
thresholds may not meet the stricter requirements of scenarios
like live broadcasting or emergency response systems, where
sub-second latency is critical.

Scalability Assessment. Our evaluation measures scalability
by the number of concurrent clients the system can support.
This may not fully reflect real-world conditions, where clients
vary in audio quality, language, and network stability.

Mitigation Strategies. To address these threats to construct
validity, we adopted several strategies: 1) for transcription
quality, we complement standard WER metrics with our
QRatio-based local agreement mechanism and a fallback con-
firmation strategy within the adaptive hypothesis buffer. This
enables more nuanced handling of multilingual and code-
switched input, especially in noisy or ambiguous contexts;
2) for real-time performance, our latency threshold applies
only to confirmed segments, while unconfirmed portions are
updated dynamically using word-level indicators. This better
reflects practical expectations for streaming ASR systems;
nd 3) for scalability, SWIM was evaluated on four datasets
(including two multilingual) recorded in both studio and real-
world conditions, covering diverse speakers and varying audio
quality. This helps ensure that our results generalize to real-
world deployments rather than idealized settings.
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B. Internal Validity

Whisper Model Limitations. The underlying Whisper
model has known limitations when handling silent audio
segments, occasionally producing hallucinated or repeated
phrases. These artifacts can inflate error rates and may not
accurately reflect the performance of the SWIM system archi-
tecture.
Audio Quality Variations. Inconsistent audio quality across
test samples may affect our evaluation. Background noise,
microphone fidelity, speaker accents, and recording conditions
can introduce biases, favoring certain client configurations or
audio types.
Mitigation Strategies. To address these threats to internal
validity, we adopted several strategies: 1) to mitigate lim-
itations of the Whisper model, we support optional voice
activity detection as a preprocessing step. This filters out non-
speech segments, reducing hallucinations caused by silence;
and 2) to handle audio quality variations, SWIM includes a
fallback mechanism that activates after repeated local agree-
ment failures, ensuring reliable output even under challenging
acoustic conditions.

C. External Validity

Dataset Limitations. Our evaluation relies on selected
datasets that may not capture the full diversity of real-world
audio streams. If these datasets predominantly feature clean,
studio-quality recordings or limited language combinations,
the results may not generalize to noisy environments, tele-
phone audio, or underrepresented languages in Whisper’s
training data.
Client Configuration Constraints. Our experiments assume
clients use uniform audio chunk durations (≤ 1 second) and
fixed sampling rates (16kHz). However, real-world deploy-
ments may involve more diverse configurations, including
varying chunk lengths and audio formats, which could impact
system performance.
Deployment Environment. Our evaluation takes place in
controlled server environments that may not capture the con-
straints of real-world deployments, such as limited computa-
tional resources, fluctuating network conditions, and varying
system loads.
Mitigation Strategies. To address threats to external valid-
ity, we implemented several strategies: 1) to overcome dataset

limitations, our evaluation covers diverse audio conditions—
including noisy environments, telephony audio, and multi-
ple languages—beyond clean, studio-quality recordings to
improve generalizability; 2) concerning client configuration
constraints, SWIM supports variable chunk sizes, with some
settings yielding better performance. Although a 16kHz sam-
pling rate is currently required, we are extending support for
automatic upsampling and downsampling to increase com-
patibility with different input formats; and 3) while testing
occurred in controlled environments, SWIM is actively deployed
in production by REDACTED, serving both internal and
external clients, confirming its real-world effectiveness.

D. Conclusion Validity

Baseline Comparison Limitations. Comparisons with
existing systems such as Whisper-Streaming and Whispy
may be affected by differences in implementation, evaluation
settings, or optimization goals, which can make direct perfor-
mance comparisons potentially misleading.

Statistical Analysis Limitations. Our analysis is limited by
sample size, which may affect the reliability of our conclu-
sions. Small samples can yield unstable performance estimates
and may not fully capture true variability in system behavior.

Mitigation Strategies. To address threats to conclusion va-
lidity, we adopted several strategies: 1) although implementa-
tion differences can impact baseline comparisons, our primary
contribution is a novel architectural approach to multi-client
ASR, which can be adopted or adapted by other systems
regardless of their implementation. This highlights method-
ological innovation over direct performance advantage; and
2) to strengthen statistical validity, we evaluated SWIM on
datasets with long audio samples (up to 5 minutes) and hun-
dreds of entries, tested across varying numbers of concurrent
clients. This reduces small-sample effects and offers a more
comprehensive assessment of system behavior under diverse
load conditions.

VII. CONCLUSION

We present SWIM, a novel multi-client real-time ASR system
that enables a single Whisper model instance to process multi-
ple concurrent multilingual streams with low latency and high
accuracy. Unlike multi-instance setups, SWIM achieves model-
level parallelization through a shared buffer merging strategy,
optimizing resource utilization while preserving transcription
quality. Key innovations include an adaptive hypothesis buffer
with QRatio-based agreement and a fallback confirmation
mechanism to manage linguistic variability. SWIM outperforms
existing single-client methods and provides scalable, cost-
effective ASR suitable for enterprise deployment.
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