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—— Abstract

Modern programming languages, most notably Rust, offer advanced linguistic constructs for building

highly configurable software systems as aggregation of features—identified by a configuration.
However, they pose substantial challenges for program analysis, optimization, and testing, as
the combinatorial explosion of configurations often makes exhaustive exploration infeasible. In
this manuscript, we present the first compiler-based method for prioritizing configurations. Our
approach consists of four main steps: 1. extracting a tailored intermediate representation from
the Rust compiler, 2. constructing two complementary graph-based data structures, 3. using
centrality measures to rank features, and 4. refining the ranking by considering the extent of
code they impact. A fixed number of most relevant configurations are generated based on the
achieved feature ranking. The validity of the generated configurations is guaranteed by using a SAT
solver that takes a representation of this graph in conjunctive normal form. We formalized this
approach and implemented it in a prototype, RUSTYEX, by instrumenting the Rust compiler. An
empirical evaluation on higher-ranked open source Rust projects shows that RUSTYEX efficiently
generates user-specified sets of configurations within bounded resources, while ensuring soundness
by construction. The results demonstrate that centrality-guided configuration prioritization enables
effective and practical exploration of large configuration spaces, paving the way for future research
in configuration-aware analysis and optimization.
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1 Introduction

Premise. Highly configurable software systems' often aim to satisfy a wide range of re-
quirements. These systems provide a set of features that can be combined in different ways
to create a variety of products [4]. Variability-rich software system development leverages
principles from product line engineering, commonly referred to as feature-oriented program-
ming [78]. Programming languages, such as C/C++ and Java, provide mechanisms to manage
software variability via preprocessor directives, conditional compilation, and annotations.

!These systems are also known as product families or software product lines (SPLs) [21]
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Rust [59] has also been designed to support the development of highly configurable software
systems via its attribute system®>—specifically, the cfg attribute.

Problem Statement. Software variability can be complex, making it challenging to reason
about all possible configurations [1]. This problem is further exacerbated by the fact that
the number of possible configurations grows exponentially with the number of features,
as demonstrated by Krueger [45]. For instance, the Linux kernel is a well-known highly
configurable software system with a significant number of features [85] that exploits the
native support for variability in C/C++ and, more recently, Rust. Over the years, the kernel
and similar systems have been extensively studied, with numerous works highlighting the
challenges posed by large configuration spaces [62, 91, 27, 58|.

State of the Art Exhaustive approaches become infeasible due to the combinatorial
explosion of configurations [5]. Therefore, a strategy is needed to reduce the number
of configurations under analysis. Several approaches aim to achieve this goal. Sampling
techniques [73, 2, 47], combinatorial testing [71, 54], and in particular t-wise testing [22, 75, 71]
attempt to reduce the configuration space while ensuring coverage. Other works have proposed
prioritization methods [29, 81, 72, 27], using criteria such as similarity [2], non-functional
properties [80], or centrality-based measures [63, 74, 49, 6]. As reported by Classen et
al. [20], many configurable systems are safety-critical, which makes prioritization even more
important: the goal is to detect faults as early as possible while reducing the number of tests.

Limitations of Existing Approaches. Despite these efforts, the problem of finding a

proper prioritization criterion remains open. Existing approaches 1. apply only to feature

models [9, 77], without considering dependencies in the code, and 2. do not account for the

extent of the code affected by each feature. Consequently, configurations that are critical

to the system’s behavior may be omitted. Moreover, the need for principled configuration

prioritization extends well beyond testing. Highly configurable systems must also address:

1. compiler optimizations and performance analysis, where either only a subset of variants
can be feasibly evaluated, or configuration relevance can guide optimization strategies [94,
84, 90, 95],

2. program comprehension and debugging, where developers must reason about representative
or critical configurations [37, 96],

3. wvariability management and refactoring, where structural changes should be guided by
the actual impact of features in the code [53, 52], and

4. regression analysis, where prioritization helps identify which configurations are most likely
to reveal behavioral differences after evolution [79, 88].

In all these contexts, treating features uniformly or relying on stochastic heuristics is

insufficient.

Proposal. In this paper, we propose—to the best of our knowledge—the first general
method for prioritizing the relevance of configurations via a compiler-based refined ranking
of features. To this end, we present RUSTYEX, a fully automated tool designed to identify
the most relevant configurations in highly configurable Rust software systems.?> We define

2Rust’s attributes are a form of syntactic metadata that can be attached to various parts of the code.
Two kind of attributes are supported: outer and inner. The former is used to annotate item declarations
(such as functions, structs, and enums), expression and statement. The latter is used to annotate modules
and block expressions (in particular cases). We will refer to the items, expressions, and statements as
terms. See https://doc.rust-lang.org/reference for more details.

3 Although we use Rust in this work, our approach to configuration prioritization is language-agnostic
and applicable to any language with native variability support, such as C/C++ or Java.
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these configurations as those containing the most relevant features. A feature’s relevance
is measured by its centrality in the feature dependency graph and the extent of the code
it impacts. As shown in Figure 1, we instrument the Rust compiler by performing an
interprocedural static analysis [68, 69]* to extract the unified intermediate representation
(UIR). The UIR is obtained by removing irrelevant information from the Rust abstract syntaz
tree (AST) and by creating the atoms.® RUSTYEX performs static analysis on the UIR to
extract two main data structures: the dependency graph [60] and the polytree [25]. The former
is a weighted directed graph, dubbed feature dependency graph (see ® and @ in Figure 2),
that represents the dependencies between the features. The latter is an induced subgraph of
the UIR, dubbed atom dependency tree (see ® and @ in Figure 2). This structure captures
the lexical scope-based [23] dependencies between atoms, enriched with the extent of the
code they affect. To address the previously mentioned limitations, we propose a method that
combines both structures to identify the most relevant configurations. This method leverages
centrality measures as structural metrics [30, 61, 65], and includes graph transformations into
propositional and conjunctive normal form (CNF) [20] formulas, along with techniques for
refining the ranking of features. RUSTYEX relies on a SAT solver to determine configurations
that satisfy the CNF formula based on the refined feature ranking. This ensures that not only
is the number of configurations reduced, but also that the most relevant configurations are
prioritized. We validate our approach on higher-ranked open-source Rust projects by running
RusTYEX with a fixed number of configurations to generate. To provide a comprehensive
evaluation, we report detailed metrics on the proposed structures for each project. Soundness
is ensured by construction, guaranteeing that all generated configurations are valid.

Contributions. The main contributions of this paper are:

the first general method for prioritizing configurations in highly configurable software
systems via a compiler-based refined ranking of features,

a formalization of the approach, from the extraction of the UIR to the algorithms for
building the complementary data structures and prioritizing configurations,

a detailed implementation of our approach in RUSTYEX, a fully automated tool for Rust
software,

an extensive evaluation of RUSTYEX on higher-ranked open-source Rust projects, demon-
strating its effectiveness in identifying and prioritizing the most relevant configurations,
and

a formal proof of the soundness of our approach, ensuring that all generated configurations
are valid.

Manuscript Structure. The remainder of the paper is organized as follows. Section 2
introduces the necessary background. Section 3 details the design of RUSTYEX, and Section 4
presents our evaluation. Section 6 discusses related work, and Section 7 concludes the paper.

2 Background
We provide background on Rust and its ownership system and on centrality measures.
4nter-procedural analysis is a static analysis technique that analyzes the control and data flow of a

program across multiple functions.
5From now on, we refer to an atom as a single term annotated with a given configuration predicate.
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2.1 The Rust Programming Language.

Rust is a system programming language that focuses on safety, speed, and concurrency.
It ensures memory safety without garbage collection, meaning pure Rust programs are
free from null pointer dereferences and data races. Rust’s ownership system—integrated
into its type system—is inspired by linear logic [35, 36] and linear types [98, 66|, enforcing
that each piece of memory (a value) has a single owner (the variable binding) at any
time [19, 17]. When the owner goes out of scope, the memory is automatically deallocated,
enabling user-defined destructors and supporting the resource acquisition is initialization
(RAII) pattern [89]. Ownership can be transferred (mowved) or temporarily shared (borrowed)
through references. Rust supports two types of borrows: multiple immutable borrows or
a single mutable borrow, but never both at the same time. These constraints, enforced
by the compiler through borrow checking, guarantee memory safety and prevent dangling
pointers by ensuring that reference lifetimes never outlive their owners. To support low-level
operations, Rust provides unsafe blocks, where the compiler’s safety guarantees are suspended
and the burden of avoiding undefined behavior falls on the programmer. Outside of these
blocks, Rust enforces strict safety, making undefined behavior impossible in safe code. Rust
supports software variability through its attribute system, particularly the cfg attribute,
which allows conditional compilation based on specified configuration predicates. A feature
in Rust is defined by all terms (see footnote 1) annotated with the same config name in a
cfg outer attribute. The inclusion of a feature in a product depends on the evaluation of
a configuration predicate at compile time, e.g., #[cfg(any(unix, windows))]. Cargo—Rust’s
package manager—Ilets developers declare features using config names in the Cargo.toml file,
combining them with logical operators into configuration predicates. Feature dependencies,
i.e., cross-tree constraints of feature models [41, 83, 42], can also be specified in the same file.

2.2 Centrality Measures

Since the early days of social network analysis, centrality measures have been used in sociology
and psychology to identify the key nodes in a network [82, 8, 43]. They have since become
central to graph theory and network analysis [16, 24, 46]. A network is typically modeled
as a graph with n nodes, indexed by i € {1,2,...,n}, and represented as an adjacency
matrix A € R™*", where A;; # 0 indicates an edge between nodes ¢ and j, and A;; =0
otherwise. As Bloch et al. [13] observe, not all centrality measures consider edge directions
and weights, though these can be incorporated. Formally, a centrality measure is a function
¢ : R™*™ — R", where ¢;(A) quantifies the relevance of node i in the network A. As a
cardinal invariant, it enables ordinal ranking of nodes based on their scores (¢;(A)). Centrality
measures are broadly categorized as: geometry-based and spectral-based [14]. In the remainder
of this section, we introduce some of the most commonly used centrality measures.

Geometric Centrality Measures. The geometric centrality measures assign relevance
by using a function of distances—i.e., the number of nodes at each distance from a given
node. Degree centrality counts the number of edges connected to a node: d™ (4) for in-degree
and d (i) for out-degree. Closeness centrality, introduced by Bavelas [8], defines a node’s
relevance as inversely proportional to the sum of its distances node to all other nodes. Since
the original formulation fails on disconnected graphs (due to infinite distances), a widely
adopted variant is:

o) =

d(i,5)<oo
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where d(i, j) denotes the shortest path between nodes ¢ and j. Harmonic centrality [57] is
defined as the sum of the reciprocals of the shortest path lengths between a node and all
others:

n 1
Hari ) = 2 267

Unlike closeness centrality, it is well-defined for disconnected graphs; for isolated nodes, the
sum evaluates to 0 since d(i,j) = oo for all j # i. Betweenness centrality [33] measures how
often a node appears on the shortest paths between pairs of nodes:

Bet, (A) = z:ﬂﬂﬁ

(o2
s#itt St

where o, is the number of shortest paths from s to ¢, and o () is the number of those paths
passing through node i. Newman [64] extended closeness centrality to weighted networks
using Dijkstra’s algorithm to compute for shortest paths. Opsahl et al. [70] further generalized
shortest-path measures by combining edge weights and counts, making them applicable to
both closeness and betweenness centrality.

Spectral Centrality Measures. The spectral centrality measures evaluate node relevance
using the dominant left eigenvector of the graph’s adjacency matrix. Eigenvector centrality [15)
assigns higher scores to nodes connected to other high-scoring nodes. It is defined as the
eigenvector v associated with the largest eigenvalue A of the adjacency matrix A:

v = Av

If A is a stochastic matriz, the dominant eigenvalue is 1. However, the eigenvector centrality
performs poorly on disconnected graphs [11]. Katz centrality [43] addresses this by considering
the number of paths of varying lengths that connect a node to all other nodes. It is defined
as:

k=1(1-p84)"

where 1 is a vector of ones, I is the identity matrix, and £ is a damping factor satisfying
B < 1/A, with A the dominant eigenvalue of A.

3 A Deep Dive into RustyEx

As introduced in Section 1, RUSTYEX is a fully automated tool that instruments Rust
compiler to: 1. extract feature dependencies in Rust software, 2. assign feature weights based
on their impact on the code, 3. apply centrality measures to rank features, and 4. prioritize
configurations.

3.1 Process Overview

RUSTYEX performs its analysis in three main phases: 1. process setup, 2. dependency
extraction , and 3. configuration generation, as shown in Figure 1.

Process Setup. Rust projects make extensive use of cfg attributes for conditional compi-
lation, both for feature gating—enabling or disabling features via Cargo—and for purposes
like platform-specific code selection [3, 18, 50]. To ensure usability, RUSTYEX integrates
seamlessly with the Rust toolchain. In this phase, it accepts a Rust project along with CLI
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Figure 1 The phases of RUSTYEX (inspired from [51])

N Cargo Subcommand Static Analyzer Post-Processing
Rust
Source | Resolve Dependencies | | Preprocess cfg macros | Centrality Propositional
Code Vector  @|| Formula @
TF Unification Algorithm / \
SAT Solver /
| Initialize Analyzer | m SB Generator
Update Unified IR Refined
— ;—‘/\—’j Vector..
OCtPI | Dispatch Source Files | L
ptions | Most Important Configs
Process Setup Dependency Extraction Configuration Generator

options that customize the analysis, such as the number (N) of configurations to generate
and the chose centrality measure. The setup uses Cargo to resolve internal crate dependencies
which are essential for the analysis.® It then initializes the analysis in memory based on the
provided options and configures the dispatch of source files to use the instrumented rustc.

Dependency Extraction. RUSTYEX instruments the Rust compiler to extract the fea-
ture dependency graph (see ®, and @ in Figure 2) and the atomn dependency tree (see
®, and ® in Figure 2) from the UIR derived from the AST. The details of these struc-
tures and their extraction are discussed in Section 3.2. This is integrated into the com-
piler by implementing the rustc_driver_impl::Callback trait, which provides four hooks:
config, after_crate_root_parsing, after_expansion, and after,analysis.7 rustc performs
the eager macro expansion® after AST creation and before name resolution. Although,
after_crate_root_parsing would be ideal for analysis before macro expansion, it lacks access
to sub-modules that have not been resolved yet. Thus, we hook into after_expansion, which
is invoked after eager macro expansion, name resolution, and AST validation. To avoid
premature evaluation of cfg attributes, we register a custom file loader in the config callback.
This loader renames cfg macros to delay their evaluation. In the after_expansion callback,
we perform inter-procedural analysis on the AST to extract the UIR weighting its nodes with
the weighted fixed-point algorithm shown in Algorithm 1 described in Section 3.2. These
weights estimate each feature’s impact on the code.

Configuration Generation. Once the weighted feature dependency graph and the atom
dependency tree are extracted, RUSTYEX uses them to identify the most relevant configura-
tions. The weighted feature dependency graph serves two key tasks: 1. ranking features via
geometry-based and/or spectral-based centrality measures (top-left box in the post-processing
phase of Figure 1), and 2. generating a corresponding propositional formula (top-right box
in the post-processing phase of Figure 1). These tasks are detailed in Section 3.3. The
propositional formula is then converted to CNF. Next, the atom dependency tree refines
the feature ranking (middle boxes in the post-processing phase of Figure 1). Finally, a
SAT solver selects the top N configurations that satisfy the CNF formula, prioritizing those

5For performance, RUSTYEX analyzes only the target crate’s source files and compiles external
dependencies with the standard Rust compiler. This reduces computational overhead but may slightly
impact accuracy [97].

"See https://doc. rust-lang.org/nightly/nightly- rustc/ for details.

8Eager expansion expands macro arguments as early as possible, regardless of the macro invocation.
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with the highest refined ranking—i.e., the most relevant configurations (bottom box in the
post-processing phase of Figure 1).

3.2 From AST to UIR

Overview. In the AST, the cfg attribute nodes and their associated terms appear as
separate child nodes under a common ancestor. Building the UIR involves two key steps:
unification and weighting. The term UIR stems from the unification step, which merges
each cfg attribute with its associated term into a single node called an atom. UIR nodes
are algebraic data types [48, 76, 93, 44, 10], specifically X-types—i.e., nodes can be either
atoms or relevant plain AST nodes. Plain AST nodes are included in the UIR only if the
wetghting step assigns them non-zero relevance—e.g., generic bounds on parameters are
usually excluded. For instance, in @ and @ of Figure 2, the function foo and its #[cfg(feature
= "a")] attribute on line 1 are unified into a single atom node, centered on the annotated
item foo. Conversely, the body nodes of the function bar remain plain AST nodes in the UIR
because they contribute to its weight, helping quantify how much of the code is influenced
by the involved cfg features.

Formalization. We define the AST as a pair (Nyst, Fyst), where Ny and Egq are the
sets of nodes and edges, respectively. Let N,..; C Ng4 denote the set of relevant nodes. A
node is considered relevant if it contributes to the semantics of a feature-dependent element.
For instance, let statements are relevant, while extern crate or use declarations are not.

The set of atoms is defined as:

A={(p,t) |ann(t)=pAt €T Ap e P}

where:

1. P is the set of all cfg predicates, each defined as a recursive X-type with the following
structure:

single(f) for feF
not(f) for fe F
any(p1,p2) for p1,p2 € P
all(p1,p2) for pi,p2 € P

2. T C Ngg is the set of all terms, and

3. ann : T — P is the surjective function that maps terms to cfg predicates.

The UIR is an enhanced induced subgraph of the AST, where nodes are enriched with cfg
predicates and edge directions are reversed. Formally, the UIR is defined as U = (N, E, wy),
where:

N =A U N, with AN N,.e; = 0, contains both atoms and relevant AST nodes, forming
a Y-type structure,
E ={(,75)]| (i,5) € E'}, where E' C E,4 is the set of reversed edges derived from the
AST, and
wy : N — NT assigns weights to nodes based on the type of term.
Since UIR nodes may be compound X-types (e.g., atoms), £’ C E,s alone does not capture
all necessary structure. To preserve connectivity, if (¢,j) € E,st and there exists a € A C N
s.t. i = term(a) or j = term(a), we extend E’ as:

El < E/ U { ((ann(z)a Z)7 .7) \ (Zv (ann(j)5 j)) }a
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Here term : A — T extracts the term from an atom. This ensures that when a node is
unified into an atom, its original AST edges are preserved in the UIR, as if the node remained
relevant on its own.

Unification Algorithm. The unification algorithm performs a depth-first visit traversal

of the AST to identify cfg attributes and their associated terms, merging them into atoms.

RusTYEX implements the visitor pattern [34] via the rustc_ast::visit::Visitor trait. To

track parent-child relationships during traversal, it maintains a term stack, where each

visited term is pushed. Since cfg attributes always appear as leftmost children of terms,

encountering one triggers the unification process. This involves:

1. extracting the configuration predicate from the cfg attribute,

2. parsing the predicate into a custom internal representation, dubbed ComplexFeature, and

3. popping the corresponding term from stack to unify it with the predicate into an atom
node.

For example, the cfg attribute on line 3 of @ of Figure 2 is parsed as

ComplexFeature: :Any(vec![
ComplexFeature: :Simple(

Feature {
name: "b".to_string(),
not: false
}
Do
ComplexFeature::Simple(
Feature {
name: "c".to_string(),
not: false
}

1)

and unified with the term bar to form the corresponding atom node. Once a term is fully
visited, it is popped from the stack and an UIR edge is added from the child to its parent.
Unlike the AST, UIR edges are reversed to reflect lexical scope-based relationships, capturing
dependency flow—key for applying graph centrality measures in the feature dependency
graph (Section 3.3). The bar node in the atom dependency tree (® in Figure 2) shows its
unified features, highlighted by the ® and ® markers, emphasizing both unification and edge
direction.

Weighting Algorithm. FEach node in the UIR is assigned a positive integers, i.e., elements
of NT. During the unification phase, RUSTYEX assigns to every UIR node a weight kind,
based solely on the kind of term it represents. These weight kinds determine how weights are
computed in Algorithm 1 (lines 16-25), and include:

1. no weight: nodes irrelevant to the analysis that receive no weight (e.g., extern crate
declarations),

2. intrinsic weight: nodes assigned a fixed weight of one (e.g., let statements),

3. children weight: nodes whose weight is the sum of their children weights (e.g., foo in @
of Figure 2), and

4. reference weight: nodes that refer to other nodes in the UIR and inherit their weight (e.g.,
the bar() call in qux in @ of Figure 2).

After unification, RUSTYEX runs a fixed-point algorithm (Algorithm 1) to compute the final

weight function wy over UIR nodes. In Rust, multiple terms can share the same identifier

only if their cfg attributes are mutually exclusive. Let o, denote the number of distinct

atoms a node n € N appears in. The algorithm initializes:
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Algorithm 1 Calculate The Weight of the UIR Nodes

1
2
3

4

5:
6:

7

8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35

36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47
48:
49:
50:

DMy @

Q<0

: 14— root(U)

U — Ut

CALC__WEIGHT(U', 7, Q, my)
RESOLVE_ QUEUE(U’', Q, M)
cUUT

: function cALC_WEIGHT(U', n, Q, M)
for all adj € ADJ(U',n) do
CALC__WEIGHT(U', adj, Q, m.,)
end for
ch_w+0
for all adj € ADJ(U',n) do
if adj.status = WAIT then
n.status <— WAIT; ret
end if
ch_w < ch_w + adj.weight
end for
match n.weight_kind with
case NO: n.weight < 0
case INTRINSIC: n.weight < 1+ ch_w
case CHILDREN: n.weight < ch_ weight
case REFERENCE(called):
if my[called] = then
n.status <— WAIT
Q<+ QU {n}
return
else
t.weight < AVG(muy[called])
end if
end match
n.status < WEIGHTED
My [n]  mw[n] Un.weight

end function
: function RESOLVE__QUEUEU', Q, M)
S0
while Q # 0 do
ce—Ql
Q< Q—{c}

if SN {c,LEN(Q)} # 0 then
c.weight < DEF_W
continue
end if
S« SU{c, LEN(Q)}
CALC__WEIGHT(U', ¢, Q, M)
if c.status = WAIT then
Q<+ QU {c}
end if
end while
end function

> transpose

> transpose back

> adjacency nodes

> children weight

> check the status

> no defs found

> set of seen nodes

> dequeue
> recovery mechanism

> assign a default weight
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Mmw : N — NT"a map storing all weights associated to the node identifier,

an empty queue @,

the root node r = root(U), and

the transposed UIR U’ = U7, since the original UIR is built bottom-up and transposing

it reestablishes parent-child relationships.
The weighting algorithm starts at the root node r, invoking the recursive CALC_ WEIGHT
function (line 17), which computes the weight of each node n € N by traversing its children
in U’ and applying the rules associated with its weight kind. Computed weights are stored
both in the node and in the map m,, for reuse. For each node n € N of kind reference, such
as function calls, the algorithm checks whether the referenced node already has a computed
weight in m,,. If the weight is not yet available, the node is marked as wait and added to the
queue . The fixed-point RESOLVE__QUEUE function (line 30) then processes ), computing
weights for the queued nodes until the queue is empty or a cycle is detected—e.g., due to
direct or mutual recursion [67, 55]. A cycle is detected when @) remains unchanged between
two complete iterations. To prevents infinite loops, the algorithm assigns a default fallback
weight to nodes involved in cycles and continues processing the remaining queue.® Finally,
the UIR is transposed back to its original direction (undoing the earlier transformation), and
the finalized weights are stored in wy.

3.3 From the UIR to the Feature Dependency Graph

Overview. Depicted in Figure 2 (®, @), the feature dependency graph is a weighted
directed graph that represents dependencies between software features. It is built by applying
the feature-extraction algorithm to the UIR. This algorithm defines rules for assigning edge
weights based on the configuration predicates of the cfg attributes in which the features
appear. At a high level, the graph reflects lexical-scope-based relationships among features.
Specifically, if f; is used within the lexical scope of an atom annotated with f;, then f;
depends on f; and a directed edge is created from f; to f;. For instance, in line 3 of Figure 2
@, feature = "b" and feature = "c" appear in an any configuration predicate, within the
lexical scope of an atom unified with the feature = "a" (line 1) and enclosing the foo
function (line 2). According to the feature-extraction algorithm, two edges of weight 1 are
created: from feature = "b" and from feature = "c" to feature = "a". In contrast, at line
7 of @, feature = "c" is used in an all configuration predicate within the global lexical scope
(denoted as [@). Consequently, an edge of weight 1/2 is added from feature = "c" to [Gl.
As in the UIR, edge directions in the feature dependency graph are reversed compared to
the original AST. The novel insight lies in preserving this natural edge direction: it allows
us to interpret a feature’s reputation (or relevance) based on the state (i.e., configuration
predicate) of the features that depend on it. This enables the application of graph centrality
measures on the feature dependency graph, where the edge weights are designed to support
more accurate feature ranking.

Formalization. Until now, we referred to the feature dependency graph as a graph.
However, during its construction, it is initially a multigraph, since a feature f; may depend
on another feature f; in multiple parts of the code. Formally, this multigraph is denoted as
F = (F,D,wg), where:

9 Another approach has been proposed by instrumenting LLVM-IR [97], attempting to solve a system
of linear equations that, by definition, could not admit solutions.
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Figure 2 RUSTYEX process demonstrated on two scenarios

1| #[cfg(feature = "a")]
2| fn foo() {
9 #[cfg(any(feature = "b", feature = "c"
4 fn bar() { let _: fn() -> u8 = { ||
G #[cfg(feature = "d")]
7 fn baz() {
0 |8 let _: fn() -> u8 = {
9 let x: u8 = 1;
10 I x
11 Y
12 }
i fn qux() { bar(); }
15| }

c")
1}

)]
e

#[cfg(feature = "a")]
fn foo() {

#[cfg(not(feature = "b"))]

fn bar(fn_: fn() -> u8) { fn_(); }
}
#[cfg(all(feature = "a", feature = "c"))]
fn baz(fn_: fn() -> u8) {

let _: u8 = match fn_() {

1=>1, _=0

Y
}
#[cfg(not(feature = "b"))]
fn qux() { #[cfg(feature = "a")]let _: u8 = 1; }

,,,,,,,,,,,,,,,,,

1. F={(fi,pi) | fi € CN Ap; C P} is the set of nodes, where C'N is the set of all feature

- >
- ;
-

names and p; is the set of all cfg predicates in which f; is used;

2. D = (U,m) is the multiset of directed edges representing feature dependencies, where
U={(i7) |47 € F} is the set of edges and m : U — N7 is the multiplicity function

that counts how many times a dependency occurs; and

3. wr: R — R, where

R={((i4),k) | (i,4) €U, 1 <k <m((i, 7))},

is the weight function that assigns a weight to each individual edge instance, indexed
by the multiplicity index k, with weights determined by the configuration predicates in

which the dependency arises.

The feature-extraction algorithm then squashes these multiple edges into single ones by
aggregating their weights, effectively transforming the multigraph F into a simple graph

F' = (F, D', wl), where:

D = {(23.7) | (Z7j) € U}

apo)) 20.mog

ydv.igy LOuapuada(q a.anwag

2a.4] Kouapuadaq wopy
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is a set of unique edges obtained by removing the multiplicities from D, and the aggregated
weight function is defined as:

m((4,5))
wi((i,) = Y wr((i,4).k), V(i,j) € D'.

k=

—

Here, the sum aggregates the weights of all instances of the edge (i, j), with m(%, j) denoting
the total number of such instances. Each individual edge instance (i, 7, k) contributes to the
total weight assigned to the edge (4,7) in the final graph F'.

Feature-Extraction Algorithm. The feature-extraction algorithm builds the feature
dependency graph F’ from the UIR. It begins by iterating over the UIR atoms A C N. For
each atom a € A, it retrieves its parent node a € {z | (4,z) € E N = € A}. The existence
of @ and uniqueness are guaranteed for all a € A such that a # [@, since the UIR is an
induced subgraph of the AST, and every node in a tree has a unique parent. This follows
from the fact that the UIR is an enhanced induced subgraph of the AST. Concretely, a is
the nearest ancestor of a that is an atom. The algorithm creates a directed edge from each
feature f o pred(a) = p, to each feature f o pred(a) = pa, where o is read as “involved
in” and pred : A — P returns the configuration predicate that annotates each atom. The
predicate sets of the feature nodes f and f are updated as:

(f,p) ¢ (f.p Apred(a)) and (f,p')  (f,p' A pred(a)).

The weights of the multi-edges are derived from the nested cfg predicate of a. For each
feature node f and each (f,w) € x(pa,1), the algorithm creates a weighted edge from f to
f , using the recursively defined function y:

[(f,w)], if po = single(f) V not(f)
X(Pa>w) = § x(p1,1) & x(p2, 1), if p, = any(p1, p2)
X(p17 dgl) D X(p27d$2)a if Pa = all(plva)

where d) = (w x [{f o p})”! and the @ infix operator concatenates two lists. For example,
in @ of Figure 2, the feature = "b" (line 3) appears in an any predicate nested under both
feature = "a" (line 1) and foo (line 2), so an edge with weight 1 is added from feature
= "b" to the feature = "a". As discussed in Section 3.3, this weighting scheme prioritizes
features in any predicates over those in all predicates, reflecting the fact that any predicates
are less restrictive (only one feature needs to be enabled), whereas all predicates require all
involved features to be enabled simultaneously. Finally, the graph is simplified by summing
the weights of all edges with the same source and target nodes.

Centrality Measures. Once the feature dependency graph is built, RUSTYEX ranks
features by relevance using a centrality measure specified via command-line argument (see
Figure 1, marked with a @ inside the Centrality Vector box). Since F is a disconnected,
weighted, directed graph, some centrality measures are either undefined or behave unpre-
dictably [11]. For example, eigenvector centrality requires a connected graph [11] and both
closeness centrality and betweenness centrality need adaptations to handle weighted directed
graphs [64, 70].1% To ensure connectivity, we introduce a synthetic patch node (see ® and
® in Figure 2). This node has a single incoming edge from [G and outgoing edges to all
other nodes, each with weight 1. This transformation guarantees that F is fully connected,
allowing the following centrality measures to be applied without modification:

YORUSTYEX uses rustworkx [92] to perform centrality measures.
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Newman Closeness Centrality [64]

Opshal Betweenness Centrality [70]

Figenvector Centrality [15]

Katz Centrality [43]
After computing centrality scores, a vector ¢ is produced where each entry v; represents
the centrality of feature f;. The patch nodes are excluded from the vector, as they are not
extracted features. This approach aligns with the intuition behind our graph construction: a
feature’s reputation is defined by the features that depend on it. Centrality measures serve
as a principled way to rank features by structural relevance.

Propositional Formula and CNF. From the feature dependency graph, RUSTYEX
builds a propositional formula by iterating over each feature node f; € F. For each node, it
generates a clause ; = £(pred(f;)), where £ maps cfg predicates to logical expressions. It

then adds an implication f; = f; for each edge (f;, f;) € D', capturing feature dependencies.

The overall formula ¢ is defined as:

e = /N (%‘ AN (fiifj))

fi€F fj€suce(fi)

where succ(f;) is the set of successors of f; in F’. Finally, ¢ is converted to CNF formula
@eny [38]. Duplicate clauses may be removed before or after the CNF conversion.

3.4 From the UIR to the Atom Dependency Tree

Overview. Figure 2 (boxes ® and ®) shows the atom dependency tree derived from the
UIR. The name highlights its selective retention of UIR X-type nodes: only the atom variant
is preserved, while plain AST nodes are removed. Specifically, only UIR nodes with cfg
attributes are kept. For instance, in Figure 2, box @, the gray qux node (representing the qux
function from line 14 in Figure 2, box @) is excluded because it lacks any cfg attribute. The
atom dependency tree captures lexical scope-based dependencies among UIR atoms. Unlike
the feature dependency graph, which flattens UIR structure, this tree preserves parent-child
relationships between atoms and, by extension, between features. Each node is weighted by

the amount of code affected by that atom’s cfg condition, reflecting the feature’s impact.

To avoid losing information when plain AST nodes are discarded, the atom dependency
extraction algorithm aggregates their weights into their nearest ancestor atom node (see foo
node in Figure 2, box ®). Finally, the centrality vector ¥ is refined using the structure of the
atom dependency tree to get a better ranking of feature relevance.

Formalization. Given the UIR definition & = (N, E,wy ), we define the atom dependency
tree as a directed graph A = (A, Ea,wa), where:

A = N ~ N, is the set of atom nodes from the UIR,
Eys=FE~{(i,7) ] (4,§) € EA(i € Npey Vj € Nyer)} is the set of edges only connecting
atom nodes, and
wa : A — NT is the weight function that assigns to each atom a weight reflecting the
amount of code affected by the cfg attributes in which its features appear.

The atom dependency tree (A) is an induced subgraph of U, containing all atons and their

dependencies, but excludes plain AST nodes. This holds trivially since A C N and E4 C E.

Atom Dependency Extraction Algorithm. The atom dependency extraction algorithm

builds the atom dependency tree from the UIR. It iterates over the UIR atoms A C N.

For each atom a € A, it identifies its parent a € {z | (4,2) € E A x € A}. As before,

23:13

CVIT 2016



23:14

Prioritizing Configuration Relevance via Compiler-Based Refined Feature Ranking

the existence of & is trivial to prove. The algorithm then distinguishes two cases: 1. if
pred(a) # 0, it creates a edge from a to @ and updates a’s weight by adding a’s weight, 2. if
pred(a) = 0, it does not create an edge from a to @ but still updates a’s weight. For example,
in Figure2, box ®, the qux node contributes to the weight of foo but does not create an edge.
The parent weight update is performed as:

wA(d) — wA(&) + wN(a).

Refinement Algorithm. The refinement algorithm refines the centrality vector ¢ using
the atom dependency tree A (see Figure 1). It iterates over each node a € A in A, extracts
every feature f o pred(a), and updates its centrality value in ¥ as:

wala), if focsingle(f) V f o not(f)

T« Uf + wa(a), if f o any(p1, pa)
HJCOZ?%, if f ocall(py, pa)

Here f o p, with p € P, means that f appears in the p-variant of a’s cfg predicate, and
wa(a) € [0,1] is the normalized weight of the node a. The normalization prevents the
inclusion of the existing centrality values in ¢. Although F captures dependencies between
features, it may fall short of expressing their actual relevance. The atom dependency tree A
refines centrality values by incorporating the extent of code affected by each feature, yielding
¥ a new permutation of the vector v.

3.5 Configuration Generation

Configuration generation is the final step of RUSTYEX. It produces the most relevant
configurations based on the centrality vector ¢" and the CNF formula ¢, (see Figure 1).
While more advanced lexical-scope-based strategies could be considered, RUSTYEX uses SAT
solvers—both incremental (e.g., MiniSat [26, 87] and CaDiCalL [12]) and non-incremental (e.g.,
Kissat [12]). Given a fixed number K of configurations to generate, the algorithm iterates
over the values in /. For each feature f;, it updates the formula as:

Penf — Penf A fz

Then, it uses a SAT solver to generate all the configurations satisfying ¢cnr. A SAT solver is
then invoked to produce all satisfying configurations for the updated formula. If a satisfying
configuration is found, it is added to the result set. This process repeats until K configurations
are obtained, negating each newly found configuration to favor the discovery of new ones.

3.6 Applications and Clarifications

The generation of configurations in RUSTYEX is performed incrementally and in a lazy
fashion. The tool ranks all features according to their refined centrality in ¢ and then
generates only the top K configurations most likely to cover critical feature interactions. In
practice, this means prioritizing configurations that include the highest-ranked features in 7,
starting with ¢{), the most central feature.

As discussed earlier, this prioritization strategy supports efficient exploration of the
configuration space by focusing on variants that are most representative and impactful in
terms of feature relevance. By analyzing these configurations first, developers can uncover
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important interactions and behaviors in the most relevant scenarios, improving overall system
understanding and validation. Moreover, this targeted approach significantly reduces the
computational cost and resource consumption associated with exhaustive analysis of all

configurations, making it a practical solution for large-scale, highly configurable systems.

For instance, these prioritized configurations could also serve as candidates for targeted
performance profiling or static analysis, ensuring that critical feature combinations are
examined before less relevant ones.

This configuration-aware pipeline highlights the potential of centrality-guided heuristics
in feature-oriented analysis of configurable systems and paves the way for future work in

optimizing configuration sampling based on structural and semantic program properties.

It suggests a broader paradigm where program structure and semantics guide systematic
exploration of the configuration space, potentially benefiting tasks such as performance
evaluation or security analysis.

4  Evaluation

The evaluation of our approach is twofold: 1. we prove the soundness of RUSTYEX by
showing that the generated configurations are valid, and 2. we evaluate the performance of
RuUSTYEX on a set of 40 real-world, high-ranking open-source Rust projects.

4.1 Soundness

Premises. To prove correctness, we show that: 1. the CNF encoding faithfully represents
all configuration constraints, 2. the SAT solver returns only satisfying assignments, and 3. no
invalid configuration is ever generated.

Construction of the CNF Formula. Clause formation—for each feature node f; € F,
a clause ¢; = l(pred(f;)) is created to enforce the logical interpretation of the feature’s
configuration predicate. That is, if a feature is enables in some configuration, then its
predicate must be satisfied. Implication formation—for every outgoing edge to f; from f;
(i.e., for each f; such that (f;, f;) € D’), an implication f; = f; is added to capture the
dependency relations. This ensures that if feature f; is active, then all its dependent f; are
also active. Extension—the formula ¢ is extended to include mandatory features specified
in Cargo.toml, guaranteeing their presence in all generated configurations. Fquivalence
Preservation—since the CNF conversion uses standard techniques that preserve logical
equivalence, any assignment that satisfying the CNF formula ¢, s also satisfies the original
formula .

Correctness of the SAT Solution. Given a SAT solver sound and complete,'! any

assignment o returned for ¢.,s satisfies every clause in ¢c,f, and thus also in ¢. This

implies:

1. for each feature f; with clause y;, its activation under « satisfies its configuration predicate:
a = ¢; Vf; € F—that is, @ models the predicate;

2. for each dependency f; = f;, the implication holds under the assignment « if a(f;) =
true = aff;) = true;

3. all mandatory features from Cargo.toml are active in o Vf; € Fandatory, (fi) = true.

A SAT solver is sound if it only returns assignments that satisfy the formula, and complete if it finds
a solution whenever one exists.

23:15

CVIT 2016



Table 1 Results of the experiments conducted on 40 Rust projects. All columns are aggregated per project, summing the values of all crates within the

workspace, except for Peak Memory Usage and UIR Height, which are the maximum values.

Project GitHub Crates.io Lines Failed D UIR UIR UIR Feat. D.G.Feat. D.G.Squashed Atom Atom Execution Memory
Name Stars Downloads of Members Mem- Fea-  Nodes Edges Height Nodes  Edges D.G.EdgeD.T. NodeD.T. Edges Time Usage
Code bers tures

rustdesk 81965 2826 108908 8 1 7 8 1353 1346 13 24 41 27 29 22 1s 53MB
gitoxide 9490 76429 223296 79 2 554 139 180166 180089 53 321 910 473 587 510 817s 999 MB
deno 101658 419085 284483 36 3 561 8 123883 123850 31 124 1220 153 570 537 3208 945 MB
tauri 89324 3840655 82089 26 2 255 65 26175 26151 30 78 193 89 144 120 108s 902 MB
sway 62453 1092 210721 28 4 369 7 119724 119700 33 75 118 78 91 67 11565 1910 MB
fuel-core 57814 265047 148682 36 4 370 69 85528 85496 31 132 437 188 351 319 153s 488 MB
alacritty 57640 192714 32812 5 1 39 6 27244 27240 24 17 47 25 36 32 117s 513MB
zed 54095 54231 591481 178 2 2458 91 23791 23615 28 381 268 237 231 55 91s 497MB
bat 51048 1496904 14971 1 0 30 9 675 674 19 5 14 7 8 7 26s 339MB
ripgrep 50241 938719 50285 10 2 40 8 60181 60173 27 43 158 69 124 116 320s 887MB
meilisearch 49152 1288 166851 19 2 196 30 44000 43983 30 46 69 41 55 38 404s 2477 MB
fuels-rs 43907 5611 42484 24 2 90 22 43578 43556 28 70 165 78 138 116 161s 691 MB
typst 37358 57580 112435 20 4 185 15 48913 48897 27 49 79 50 57 41 81s 465MB
helix 35745 103645 93042 14 1 143 12 55807 55794 28 59 175 89 133 120 59558 980 MB
ruff 35669 4764 370658 38 3 402 23 124392 124357 51 130 237 161 176 141 462 504 MB
lapce 34961 35019 67802 5 2 73 3 20525 20522 41 16 44 25 32 29 195s 948 MB
nushell 33821 975 291737 36 6 213 26 126096 126066 28 108 303 138 232 202 662s 956 MB
polars 31805 2400845 376212 26 3 362 789 58368 58345 32 103 448 161 354 331 277s 529 MB
swC 31649 1767375 648247 116 15 957 230 412313 412212 258 326 1122 369 722 621 2016 3425 MB
influxdb 29458 283996 54304 19 2 352 15 62082 62065 27 58 116 67 92 75 164s 504 MB
tabby 29742 5637 41457 19 1 270 15 52972 52954 21 55 134 56 109 91 442s 1827 MB
servo 29222 8792 367323 8 1 45 19 2670 2663 10 19 23 17 17 10 1s 64 MB
wasmer 19335 4820432 263877 35 8 350 153 72860 72833 26 121 318 164 235 208 2465 435 MB
diem 16702 16759 428331 186 10 2239 130 427311 427135 65 477 1207 475 757 581 1359 s 968 MB
texture-synthesis 1768 61696 4735 3 0 7 2 13211 13208 23 15 30 22 21 18 11s 295 MB
kajiya 5006 1060 26638 14 3 97 3 28922 28911 29 25 22 17 19 8 68s 1395 MB
rust-gpu 7412 2135 44422 19 1 66 24 7581 7563 34 46 41 38 31 13 12s 360 MB
substrate 8381 1938 595987 270 8 2986 554 516169 515907 43 863 2172 1002 1681 1419 1135s 1801 MB
tantivy 12662 5253776 118896 9 1 67 11 34915 34907 51 32 84 41 66 58 104s 478 MB
tonic 10477 93238823 41456 29 0 166 42 37584 37555 25 88 330 104 254 225 270s 545 MB
sendme 357 15473 1031 1 0 20 0 1577 1576 18 2 1 1 1 0 52s 525 MB
komodo 2766 822 63829 12 3 57 2 12443 12434 33 20 33 13 31 22 80s 685 MB
quiche 9841 541561 84162 9 2 28 0 23455 23448 67 25 62 30 50 43 28s 352MB
rolldown 10119 941 49343 35 1 256 12 35014 34980 32 89 149 76 126 92 64s 354 MB
iroh 3892 96831 39197 1 129 14 15758 15752 20 22 70 28 43 37 100s 381 MB
spl 1194 1238 104219 25 1 363 44 70776 70752 53 7 183 87 147 123 248s 549 MB
union 22086 11795 387611 148 2 1562 248 134318 134172 33 518 843 605 605 459 212s 563 MB
hyperswitch 13381 13567 575328 33 6 450 116 107187 107160 29 123 754 183 578 551 5998 3800 MB
egui 23706 4248075 101376 39 4 138 44 39574 39539 44 111 235 126 181 146 88s 489 MB
pueue 5297 72209 18340 3 2 24 0 15463 15462 23 5 18 8 15 14 64s 506 MB
Total 1212599 120362360 7329058 1628 116 17036 3008 3294554 3293042 258 4898 12873 5618 9129 7617 13328s 3800 MB
Average 30314 3009059 183226 40 2 425 75 82363 82326 37 122 321 140 228 190 333s 885 MB

1 X4
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By definition, a configuration is valid if and only if:

it satisfies all the configuration constraints including feature predicates and dependencies,
and
it includes all mandatory features.
Therefore, since any assignment o produced by the SAT solver satisfies all clauses in @,
every configuration generated by RUSTYEX is valid.

Reinforcement by Contradiction. Assume, for contradiction, that the SAT solver
returns a configuration o’ that is invalid—that is, it violates one or more constraints. Then
there exists at least one clause in ., that is not satisfied by o’. By definition, a satisfying
assignment satisfies all clauses in the formula, and the soundness of the SAT solver guarantees
that o is a satisfying assignment for ¢, s. This contradiction implies that our assumption
is false: o’ cannot be invalid. Hence, all configurations produced by the SAT solver are valid.

4.2 Performance Evaluation

Experimental Setup. All experiments were conducted on a commodity laptop equipped
with an Intel Core i5-1135G7@2.40 GHz CPU and 16 GB of RAM. This choice highlights
the lightweight nature of our approach: unlike many program analysis and variability-
management tools, which often require dedicated servers or high-performance hardware,
RUSTYEX can be executed on standard developer workstations. Most of the analyzed projects
are organized as Cargo workspaces, which naturally decompose the system into multiple
crates. For each crate, we executed RUSTYEX with a timeout of 10 minutes, which is a
realistic bound for integration in a continuous integration (CI) pipeline. Various metrics
were collected and then aggregated at the project level, including counts of features and
dependencies, statistics on UIR nodes and edges, and summaries of the feature dependency
graph and the atom dependency tree. We also monitored peak memory usage and execution
time. Overall, these choices demonstrate that RUSTYEX can be seamlessly adopted in
everyday development workflows, where fast turnaround and modest resource requirements
are essential. A replication package with all experimental data and scripts is available on
Zenodo:

https://doi.org/10.5281/zenodo.17691776.

Execution Time and Scalability. Figure 3—highlighted in ®—shows the correlation
between lines of code and execution time on a logarithmic scale. RUSTYEX successfully
completed the analysis of about 93% of the projects, showing strong scalability across a wide
range of sizes and domains. Execution time scaled smoothly with code size: for small to
medium projects, the analysis often completed within seconds, while for the largest ones
(e.g., hyperswitch and swc) execution time peaked at 33 minutes. The average execution time
per project was 333 seconds, with individual crates requiring about 8seconds on average.
These results confirm that our tool is not only efficient in practice, but also robust enough to
handle large modular codebases with hundreds of thousands of lines of code and thousands
of features. Importantly, the logarithmic trend visible in the plot suggests that the analysis
cost grows sub-linearly compared to project size, which indicates that RUSTYEX is suitable
for long-term scalability.

Memory Usage. Figure 3—highlighted in ®@—shows the correlation between lines of code
and peak memory usage, also on a logarithmic scale. Memory consumption was generally
modest: most projects required less than 1 GB of RAM, while only a handful of large codebases
such as hyperswitch and swc reached a peak of 3.8 GB. The average peak usage was 885 MB
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Figure 3 Correlation between lines of code (x-axis), execution time (s) ®, and peak memory
usage (MB) ®.

Execution Time (log scale)

Peak Memor

10° 10! 102 10° 10* 10° 10°
Lines of Code (log scale)

per project, which fits comfortably within the capacity of mainstream laptops. At the crate
level, average peak memory dropped to 105 MB, indicating that memory requirements depend
more on the internal complexity of each crate than on the overall project size. This stability
across a diverse set of projects confirms that RUSTYEX can be executed in environments
with limited resources, such as cloud-based CI/CD pipelines or developer laptops.

Intermediate Structures. The intermediate representations produced by RUSTYEX
remained compact and efficient to process. On average, the UIR contained approximately
82,000 nodes and a similar number of edges, which is relatively small compared to the
size of the original ASTs. The feature dependency graphs were significantly more compact,
typically comprising between 100 and 500 edges after multi-edge squashing. Even smaller
were the atom dependency trees, which were on average 95% smaller than the UIR itself.
This compactness is particularly important because it directly impacts the cost of subsequent
analyses and ranking procedures: smaller graphs and trees allow for faster computation of
centrality measures and logical transformations. These results highlight that our abstraction
strategy, centered on atoms and UIR, strikes a good balance between preserving semantic
detail and reducing analysis overhead.

Feature Complexity. Most projects defined a substantial number of features, with a
median of 425 per project. On average, RUSTYEX detected 122 nodes in the feature
dependency graph, often revealing cross-feature dependencies that underscore the challenges
of analyzing highly configurable systems. As shown in Figure 4, the number of detected
features is generally greater than the number explicitly declared in Cargo.toml files. This
discrepancy arises mainly from two factors: 1. feature overlaps across different crates within
the same workspace, which are not redefined in the manifest, and 2. the handling of the not
predicate, which introduces logically independent variants and, in the worst case, doubles
the number of detected features.

Despite the substantial number of features, their utilization remained modest: on average,
only 228 feature-related artifacts were identified, which means that each feature was used
fewer than two times on average. This finding suggests that while projects expose a rich
configuration space at the feature level, many features have limited practical impact on
the actual codebase. In turn, this motivates the need for principled prioritization: if most
features are rarely used, developers and testers should concentrate on the ones that have the
greatest influence on the system.
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Figure 4 Delta between the number of declared features and the number of detected feature.
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Robustness. Finally, we assessed the robustness of RUSTYEX. Out of more than 1,600
crates analyzed (roughly 40 per project), only 116 failed, yielding a 93% success rate. Most
failures were attributable to missing system dependencies during compilation, which are
unrelated to the analysis itself. Timeouts were rare, affecting fewer than 2% of the crates.
Importantly, no major crashes or incorrect results were observed. Even large modular
workspaces such as diem and deno were analyzed successfully without manual intervention.
These results confirm that RUSTYEX is mature and reliable enough to be integrated into the
toolchains of both researchers and practitioners.

5 Threats to Validity

We organize our discussion following Wohlin et al. [99]’s taxonomy.

5.1 Construct Validity

Proxy metrics for feature relevance. We rely on geometric and spectral centrality
computed on the feature dependency graph to approximate feature relevance. These metrics
are not neutral: each has biases and limitations, especially regarding disconnected components
and local vs. global influence.

Mitigation. RUSTYEX allows users to select the centrality measure that best fits their
project domain, thus reducing the risk of systematic misinterpretation. To avoid excluding
isolated features, the tool introduces a patch node that connects otherwise disconnected
components, ensuring that all features are represented in the ranking process.

Weighting of UIR nodes. In cases where definitions are missing or cycles are detected,
nodes of type reference are assigned a default weight. This approximation may underestimate
the role of unresolved external calls, potentially distorting prioritization.

Mitigation. RUSTYEX implements a recovery mechanism that assigns fallback weights,
preventing infinite loops and limiting distortion. This ensures that unresolved dependencies
do not cancel the influence of otherwise relevant nodes.

5.2 Internal Validity

Assumptions about SAT solver correctness. Our configuration generation relies on the
soundness and completeness of the underlying SAT solver. If the solver produced incorrect
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results, the validity of generated configurations would be at risk.
Mitigation. To minimize this threat, we use widely adopted and thoroughly tested SAT
solvers, reducing the likelihood of errors and strengthening the robustness of our approach.

Timeouts and analysis failures. A fraction of crates (~ 7%) failed due to timeouts or
missing system dependencies. Such failures may introduce selection bias, as not all crates
are equally represented in the analysis.

Mitigation. We adopt a fixed 10-minute timeout per crate to ensure fairness across the
dataset. Failed crates are skipped, but since the majority of failures were due to missing
dependencies rather than intrinsic tool limitations, the overall validity of the evaluation
remains preserved.

5.3 External Validity

Focus on open-source Rust projects. Our evaluation is based on 40 open-source projects
from GitHub and crates.io. While these projects cover a broad spectrum of real-world
software, they may not capture the full variability of proprietary or industrial codebases.
Mitigation. Many of the analyzed projects are widely used in production and serve as
dependencies for industrial systems. This increases confidence that the results generalize
beyond purely academic or hobbyist software. Furthermore, since our method is language-
agnostic, future work will investigate applications in other ecosystems such as C/C++.

Fixed configuration budget. We generated a fixed number K of configurations per
project. In practice, real-world scenarios may require adaptive strategies that vary the
number of generated configurations depending on project size, release stage, or available
resources.

Mitigation. RUSTYEX supports parameterized configuration policies, enabling users to
adjust K according to their specific needs and constraints. This flexibility ensures that the
tool can be adapted to dynamic development and testing scenarios.

5.4 Conclusion Validity

Dependence on feature ranking. The order in which configurations are generated
depends on both the selected centrality metric and the refinements applied to the atom
dependency tree. Different choices may therefore lead to different prioritized sets.

Mitigation. RUSTYEX makes it possible to switch among centrality measures and disable
refinements. This allows users to conduct sensitivity analyses and evaluate how rankings
vary under different assumptions.

No ground truth for configurations. There is no universally accepted reference set of
“correct” or “important” configurations. As a result, it is challenging to directly evaluate the
relevance of the configurations produced by our method.

Mitigation. To address this, RUSTYEX enforces structural consistency checks and ensures
compliance with Cargo.toml constraints, such as required features and valid predicate logic.
Additionally, it verifies that all generated configurations are satisfiable with respect to the
derived CNF formula. These safeguards ensure that generated configurations are both valid
and representative of critical execution paths.

6 Related Work

Prioritizing configurations in highly configurable systems has been extensively studied, though
from different perspectives and often under different assumptions. Several comprehensive
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surveys provide an overview of the field, such as [1] (see in particular Sect. 4.4), [29], and [39],
which systematically map research trends and highlight open challenges. Building on these,
we briefly summarize the most relevant contributions along three main dimensions.

Static Analysis and Preprocessing. FEarly work on highly configurable systems, es-
pecially in the context of the Linux kernel, focused on static analysis and preprocessing
techniques. El Sharkawy et al. [28] developed methods to process #ifdef directives for
extracting software metrics, making configuration-specific complexity more manageable.
Similarly, Sincero et al. [86] investigated preprocessing of C macros to detect dead code,
thus helping to reduce variability-induced maintenance effort. These approaches are closely
related to our idea of analyzing variability from the source, but they remain tied to metrics
extraction or defect detection in specific ecosystems. By contrast, RUSTYEX generalizes
the notion of variability-aware static analysis beyond macros or directives, targeting the
identification of relevant configurations in Rust projects without assuming language-specific
preprocessing artifacts.

Feature Model-based Prioritization. Another major line of research builds on explicit
feature models, where features and their relationships are captured in structured diagrams.
Bagheri et al. [6] proposed the stratified analytic hierarchy process to prioritize and select
features by decomposing the decision process into manageable layers. Peng et al. [74]
employed a directed, weighted acyclic graph to assess feature importance via weighted
degree centrality, highlighting asymmetries in feature influence. Mannion et al. [56] explored
weighting strategies based on variability types, assuming a graph with explicit sources and
sinks. Beyond prioritization, Bagheri et al. [7] also assessed the maintainability of feature
models using structural metrics such as cyclomatic complexity [61], network centrality [65],
and classical software engineering metrics [30]. While these approaches are rigorous and
effective, they presuppose the existence of a formal feature model—a strong assumption
in practice, since many modern systems (including Rust projects) rely on decentralized,
implicit forms of variability encoded directly in build manifests and conditional compilation.
RusTYEX differs in this respect, as it does not require a predefined feature model, but instead
reconstructs variability information directly from source and build metadata.

Centrality Measures for Prioritization. A complementary strand of research applies
graph-theoretic concepts, especially centrality measures, to variability management and
testing. Mohammed et al. [63] ranked configurations within a single feature model using a
variety of centrality metrics, thus identifying configurations with disproportionately high
influence. Levasseur et al. [49] used centrality, object-oriented metrics, and machine learning
to prioritize unit tests, showing that structural graph properties can guide resource allocation
in testing. Ferreira et al. [32] went further by proposing wvariational call graphs [31, 40]
enriched with centrality information to pinpoint functions that may become vulnerabilities
under certain feature combinations. While all these works demonstrate the value of centrality
in highlighting critical elements, they remain tied either to explicit feature models, to testing
strategies, or to specialized tasks such as vulnerability detection. Our approach builds on the
same intuition—that centrality can capture relevance—but applies it to a new abstraction
level: the atom dependency tree derived from Rust’s variability constructs. In doing so,
RuUsTYEX extends the applicability of centrality-based prioritization to ecosystems where
feature models are implicit and configuration spaces are both large and sparsely exercised.
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7 Conclusion

In this paper, we presented the first general method for prioritizing configurations in highly
configurable software systems via a compiler-based refined ranking of features. Unlike
previous approaches, our method does not rely on pre-existing feature models and explicitly
accounts for feature dependencies and the extent of code affected by each feature.

The method combines inter-procedural static analysis to extract a unified intermediate
representation (UIR), construction of the feature dependency graph and the atom dependency
tree, centrality-based ranking, and CNF-based SAT solving. This combination enables the
identification and generation of the most relevant configurations while reducing the total
number of configurations to consider.

To demonstrate the practicality of our method, we implemented it in RUSTYEX, a fully
automated tool for Rust software. Extensive evaluation on high-profile open-source Rust
projects shows that RUSTYEX is scalable, robust, and efficient: it handles large codebases with
thousands of features, maintains modest memory and runtime requirements, and achieves a
high success rate across crates. The approach is language-agnostic and can be applied to
other ecosystems with native variability support, such as C/C++ and Java.

By explicitly prioritizing the most relevant features and configurations, our method—and
its RustyEx implementation—supports efficient testing, compiler optimizations, program
comprehension, variability management, and regression analysis. Generated configurations
are valid, sound, and representative of critical execution paths, providing a principled
alternative to stochastic or uniform strategies.

Overall, this work introduces the first general, formally sound, and practical approach to
configuration prioritization, improving efficiency and fault detection in highly configurable
systems and laying the foundation for future extensions to other languages and domains.
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