
Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 1 of 23

Universal Language Server Protocol and

Debugger Adapter Protocol for Modular

Language Workbenches

Federico Bruzzone

Università degli Studi di Milano

Computer Science Department

PhD Candidate in Computer Science

22/07/2024

Cyclus 40th

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 2 of 23

Problem Statement
Programming Language Implementation

The implementation of a programming language is a complex

task that involves several implementation aspects, such as:

– Syntax and semantics

definition

– Type system definition

– Code generation

– Error handling

– IDE support

– Documentation

It is usually done in a monolithic way with a top-down approach,

where all the aspects are tightly coupled.

This makes the maintainability, extensibility and reusability of the

implementation difficult.

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 2 of 23

Problem Statement
Programming Language Implementation

The implementation of a programming language is a complex

task that involves several implementation aspects, such as:

– Syntax and semantics

definition

– Type system definition

– Code generation

– Error handling

– IDE support

– Documentation

It is usually done in a monolithic way with a top-down approach,

where all the aspects are tightly coupled.

This makes the maintainability, extensibility and reusability of the

implementation difficult.

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 2 of 23

Problem Statement
Programming Language Implementation

The implementation of a programming language is a complex

task that involves several implementation aspects, such as:

– Syntax and semantics

definition

– Type system definition

– Code generation

– Error handling

– IDE support

– Documentation

It is usually done in a monolithic way with a top-down approach,

where all the aspects are tightly coupled.

This makes the maintainability, extensibility and reusability of the

implementation difficult.

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 3 of 23

LSP and DAP
In a Nutshell

In 2016, Microsoft in collaboration with Red Hat introduced

the Language Server Protocol (LSP) and the Debugger Adapter

Protocol (DAP).

The LSP and DAP are JSON-RPC based protocols that allow

the communication between a Language Server and an IDE.

Editor

Language-agnostic
editing support

Editing actions
⇕

Text changes

Server

Language-specific
editing support

Language actions
⇕

Text Changes

LSP

Intrinsic properties:

– Language-agnostic

– IDE-agnostic

– Asynchronous

– Text-based

Features:

– Diagnostics

– Hover

– Go to definition

– Find references

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 3 of 23

LSP and DAP
In a Nutshell

In 2016, Microsoft in collaboration with Red Hat introduced

the Language Server Protocol (LSP) and the Debugger Adapter

Protocol (DAP).

The LSP and DAP are JSON-RPC based protocols that allow

the communication between a Language Server and an IDE.

Editor

Language-agnostic
editing support

Editing actions
⇕

Text changes

Server

Language-specific
editing support

Language actions
⇕

Text Changes

LSP

Intrinsic properties:

– Language-agnostic

– IDE-agnostic

– Asynchronous

– Text-based

Features:

– Diagnostics

– Hover

– Go to definition

– Find references

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 3 of 23

LSP and DAP
In a Nutshell

In 2016, Microsoft in collaboration with Red Hat introduced

the Language Server Protocol (LSP) and the Debugger Adapter

Protocol (DAP).

The LSP and DAP are JSON-RPC based protocols that allow

the communication between a Language Server and an IDE.

Editor

Language-agnostic
editing support

Editing actions
⇕

Text changes

Server

Language-specific
editing support

Language actions
⇕

Text Changes

LSP

Intrinsic properties:

– Language-agnostic

– IDE-agnostic

– Asynchronous

– Text-based

Features:

– Diagnostics

– Hover

– Go to definition

– Find references

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 4 of 23

LSP and DAP
The Reduction of Combinations

Initially implemented for Visual Studio Code, the LSP and DAP

have been adopted by several IDEs and programming languages.

L×E L+E

Rust

Java

C

Code

Nvim

Emacs

C

Java

Rust

LSP
or

DAP

Code

Nvim

Emacs

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 4 of 23

LSP and DAP
The Reduction of Combinations

Initially implemented for Visual Studio Code, the LSP and DAP

have been adopted by several IDEs and programming languages.

L×E L+E

Rust

Java

C

Code

Nvim

Emacs

C

Java

Rust

LSP
or

DAP

Code

Nvim

Emacs

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 5 of 23

LSP and DAP
What would be an important achievement?

Reducing the number of combinations between Language

Servers and IDEs.

L× 1

C

Java

Rust

LSP
or

DAP
Client Generator

Code

Nvim

Emacs

RO 1: Reduce to L × 1 the number of combinations to support

L languages

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 5 of 23

LSP and DAP
What would be an important achievement?

Reducing the number of combinations between Language

Servers and IDEs.

L× 1

C

Java

Rust

LSP
or

DAP
Client Generator

Code

Nvim

Emacs

RO 1: Reduce to L × 1 the number of combinations to support

L languages

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 6 of 23

Feature-Oriented Programming

Feature-Oriented Programming (FOP) is a programming

paradigm that allows the development of software product

lines (SPLs).

- Feature is a unit of functionality that satisfies a

requirement.

- Feature Model is a model that represents the variability of

the SPL.

- Feature Configuration is a set of features that compose

a product.

RO 2: Facilitate LSP and DAP Modularization

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 6 of 23

Feature-Oriented Programming

Feature-Oriented Programming (FOP) is a programming

paradigm that allows the development of software product

lines (SPLs).

- Feature is a unit of functionality that satisfies a

requirement.

- Feature Model is a model that represents the variability of

the SPL.

- Feature Configuration is a set of features that compose

a product.

RO 2: Facilitate LSP and DAP Modularization

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 7 of 23

Feature-Oriented Programming

N× 1 where N << L

Java

C

Rust

typedef

if

for

trait

class
LSP
or

DAP
Client Generator

Code

Nvim

Emacs

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 8 of 23

Language Workbenches

Language Workbenches (LWs) are tools that allow the

development of programming languages, both GPLs and DSLs.

Language

Workbench

Modularization

Supp.

Precompiled

Feature

Supp.

Native

IDE

gen.

LSP & DAP

Gen.

LSP & DAP

Mod.

JustAdd G# # # # #
Melange T # 3rd p. ✰ ✰

MontiCore G# G# # #
MPS T # ✰ ✰

Rascal # # # #
Spoofax T G# ✰ ✰

Xtext # G# #
Neverlang U # ? ?

 Full support

No support

G# Limited support

U Fine-grained mod.

T Coarse-grained mod.

? My expected contribution

✰ Extended contribution

3rd p. Third-party

RO 3: Improve IDE and LSP Generation

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 9 of 23

Scientific Contribution

– Methodology for whole LWs that support at least

component modularization.

– Type System, LSP and DAP Modularization.

– DSL for Type System definition.

– LSP and DAP generation for Neverlang languages.

– Clients and Syntax Highlighting generation reducing the

number of combinations.

– Implementation of a Java Library for Neverlang to support

the type system, LSP and DAP for every language developed

with Neverlang.

– 3 use cases to show the effectiveness of the methodology.

RO 4: Leverage Neverlang for LSP and DAP in LPL

Development

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 10 of 23

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 10 of 23

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 10 of 23

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 10 of 23

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 10 of 23

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1 · · · Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1 · · · Scope X

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 11 of 23

Scientific Contribution
TSs, LSP and DAP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant


Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 12 of 23

Conclusions
Master’s Thesis Results

– We are writing an article (Code Less to Code More) to be

submitted to JSS.

– Propose a feasibility study for the methodology.

– We prototyped the reduction of combinations.

– We prototyped the modularization of the type system.

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 13 of 23

Thanks for your attention!

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 14 of 23

Type Checking and Type Inference

1 function sum1(x) {
2 return sum(x, 1);
3 }

5 function sum(x, y) {
6 return x + y;
7 }

Root

function
sum1

parameters

identifier
x

body

return

call expr

identifier
sum

arguments

identifier
x

number
1

function
sum

parameters

identifier
x

identifier
y

body

return

bin expr
+

identifier
x

identifier
y

1

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 14 of 23

Type Checking and Type Inference

1 function sum1(x) {
2 return sum(x, 1);
3 }

5 function sum(x, y) {
6 return x + y;
7 }

– Compilation Unit

– Compilation Unit Task

– Compilation Helper

Task #0 with Priority global

Task #1 with Priority fun Task #2 with Priority fun

Root

function
sum1

parameters

identifier
x

body

return

call expr

identifier
sum

arguments

identifier
x

number
1

function
sum

parameters

identifier
x

identifier
y

body

return

bin expr
+

identifier
x

identifier
y

1

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 15 of 23

Software Product Lines

Since 1990s, researchers have been working on the concept

of Software Product Lines (SPLs) to move towards a more

modular world.

– SPLs defines a family of software products.

– SPLs is described by a Feature Model.

– A Feature Model describes the variability of the software.

– SPL variants are generated by selecting a set of features.

– A feature (or artifact) is a first-class entity in SPLs.

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 15 of 23

Software Product Lines

Since 1990s, researchers have been working on the concept

of Software Product Lines (SPLs) to move towards a more

modular world.

– SPLs defines a family of software products.

– SPLs is described by a Feature Model.

– A Feature Model describes the variability of the software.

– SPL variants are generated by selecting a set of features.

– A feature (or artifact) is a first-class entity in SPLs.

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 16 of 23

Language Product Lines

Applying the concept of SPLs to programming languages, we

obtain the concept of Language Product Lines (LPLs).

Expression

Numbers

AddExpr MulExpr UnaryExpr Numeric

Primaries

Primary PrimaryExpr

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Some achievements:
– Bottom-up approach to language implementation

– Reusability of language artifacts

– Multiple variants of the same language

– Language Workbenches come to the rescue

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 16 of 23

Language Product Lines

Applying the concept of SPLs to programming languages, we

obtain the concept of Language Product Lines (LPLs).

Expression

Numbers

AddExpr MulExpr UnaryExpr Numeric

Primaries

Primary PrimaryExpr

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Some achievements:
– Bottom-up approach to language implementation

– Reusability of language artifacts

– Multiple variants of the same language

– Language Workbenches come to the rescue

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 17 of 23

Research Objective 1

RO 1: Reduce to L × 1 the number of combinations to support

L languages

RQ 1.1: How can IDE generation be improved to

support LSP and DAP?

RQ 1.2: What are the key challenges in generating

LSP and DAP for different programming

languages?

RQ 1.3: How can a universal LSP and DAP be

developed to support multiple languages and

IDEs?

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 18 of 23

Research Objective 2

RO 2: Facilitate LSP and DAP Modularization

RQ 2.1: How can LSP and DAP modularization be

facilitated in language workbenches?

RQ 2.2: What are the key challenges in modularizing

LSP and DAP for different programming

languages?

RQ 2.3: How can LSP and DAP modularization

be integrated with existing language

composition and modularization features in

language workbenches?

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 19 of 23

Research Objective 3

RO 3: Improve IDE and LSP Generation

RQ 3.1: How can the number of combinations

required to support multiple languages be

reduced to L × 1?

RQ 3.2: In what ways does simplifying the

development process for language support

enhance efficiency?

RQ 3.3: How does reducing combinations impact

the speed and effectiveness of creating

language support?

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 20 of 23

Research Objective 4

RO 4: Leverage Neverlang for LSP and DAP in LPL

Development

RQ 4.1: How can Neverlang’s LPL development

features be leveraged for creating

a reusable core for LSP and DAP

functionalities?

RQ 4.2: What are the key benefits of using

Neverlang for LSP and DAP development in

the context of LPLs?

RQ 4.3: How does leveraging Neverlang’s LPL

features enhance the scalability and

efficiency of LSP and DAP development?

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 21 of 23

Journals and Conferences

Journals

– JSS (Journal of Systems and Software)

– TSE (IEEE Transactions on Software Engineering)

– TOSEM (ACM Transactions on Software Engineering and Methodology)

– TOPLAS (ACM Transactions on Programming Languages and Systems)

Conferences

– ICSE (International Conference on Software Engineering)

– PLDI (Programming Language Design and Implementation)

– OOPSLA (Object-Oriented Programming, Systems, Languages, and Applications)

– SLE (Software Language Engineering)

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 22 of 23

Language Workbenches and Research Groups

– JustAdd → Computer Science department of the Lund University (Lund, Sweden)

– Melange → DiverSE research team at the Institut National de Recherche en

Informatique et en Automatique (INRIA) (Paris, France)

– MontiCore → Software Engineering group at the RWTH Aachen University

(Aquisgrana, Germany)

– MPS → JetBrains Research (Saint Petersburg, Russia)

– Rascal → Centrum Wiskunde & Informatica (CWI) (Amsterdam, Netherlands)

– Spoofax → Delft University of Technology (Delft, Netherlands)

– Xtext → Eclipse Foundation (Ottawa, Canada)

Universal LSP

and DAP for

Modular LWs

Federico

Bruzzone

Problem

Statement

LSP &DAP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Modularization

Conclusions

Slide 23 of 23

Language Workbenches and Research Groups

– Martin Fowler: Renowned for his work on software development methodologies.

His book "Domain-Specific Languages" is a seminal work in the field.

– Thomas Kühn: Known for his work on Software and Language Product Lines

Engineering. Professor at the Martin Luther University Halle-Wittenberg, Germany.

– Markus Voelter: Known for his contributions to the development and promotion

of language workbenches like JetBrains MPS.

– Eelco Visser: A professor at Delft University of Technology, Visser has made

significant contributions to the field through his work on the Spoofax language

workbench.

– Gregor Kiczales: Known for his work on aspect-oriented rogramming (AOP).

Professor at the University of British Columbia.

– Antonia Bertolino: Known for her work on software testing and quality

assurance.

	Problem Statement
	Programming Language Implementation

	LSP and DAP
	In a Nutshell
	The Reduction of Combinations
	What would be an important achievement?

	Feature-Oriented Programming
	Language Workbenches
	Scientific Contribution
	
	Type System Components
	TSs, LSP and DAP Modularization

	Conclusions

