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Notation

- G = (V, F) is an undirected graph with vertex set V = {v,...,v,, }
and edge set F, and denote I = [1;n] = [1;n] N Z.

« Anedgee = (v,b-, vj) € E with ¢ < j links the underlying vertices (for
VICP there is no sense to consider loop/multiple edges).

 Fori € I, §, denotes the set of neighbors of vertex v;, and d, = |J,| =
{j €| ngb(v;,v;) =1}, wherengb(v;,v;) =1iif (v;,v,;) € E*

’ngb stands for “neighbor”.



A k-coloring of G

. It is an assignment of colors to vertices such that no two adjacent
vertices share the same color.

« VCP consists in finding a k-coloring of GG using the minimum number
of colors k (the chromatic number x(Q7)).

+ A valid k-coloring (c) fulfills: Vi < 7, (v;,v,) € E = ¢; # ¢; where
c, = [1; k] is the color of v,.



A partial k-coloring of GG

. If a vertex may not be colored, we set ¢, = —1 s.t. ¢; € [1; k] U {—1}

» A partial k-coloring (c) is feasible if Vi < j, (v,, ’Uj) c FE=c, +

« Given v, the saturation table S; is the set of colors assigned to its
colored neighbors: S, = U?eéi {c;} \ {—1},and s; = |S;| is the

saturation degree.

A total order = over V is defined as: v; = v, <= s, > 5, V (sz =5, A
d; > d;)



Compact ILP Formulations?, feasible iif x(G) < k

Zi,c = {07 1}
indicates if
vertex v, 1s
assigned color
C.

y. €1{0,1}
indicates if
color ¢ is used

in the coloring,.

k
min E Y. The objective minimizes the
— number of used colors.
c=1
i The 1st set that each
, e 1st set ensures that eac
s.t. E :zi,c =1 Viel vertex is assigned exactly one

c=1 color.

z: +z. < V(iv,,v,) € E
t,C J,¢ — Ye ( L& J) ’ The 2nd set ensures that

\v/c e [[1, k]] adjacent vertices do not share
the same color.

*Efficient formulations: extended column generation by Furini and Malaguti [2], and reduced formulation to MWSSP by Cornaz et al. [3].



Observations

- Having an upper bound of the chromatic number as the initial
value k (or simply k = |V'|) guarantees the optimality of the
solution.

« The size of k strongly affects the performance of ILP solvers.

« Symmetries in the model (e.g., colors are permutable) enlarge
the search space for Branch-and-Bound algorithms (the same

solution can be represented in multiple ways)



Repre S entative ILP MO del4, asymmetric and easily to LP-relax

The objective counts the

z; . €10,1}, number of representative
Vi, i € vertices (i.e., used colors).
Vs.iti < mlIl Z Li
= The 1st set ensures either
1n.d1.cates if x; ; = 1 (i is representative) or
verticies v; and s.t. Z X, /| > 1 Viel i’s representative is a previous
vy share the i’ <i vertex i’ < 1 (all vertices must
same color and = be colored).
¢ is the
minimum xja’i T xj,i/ < xjaj \V/(’UZ-, vi/) S E’ The 2nd set expresses the
index of its \/ ] < g <4 color incompatibility between
color class. - adjacent vertices and z; , =
l=uz,,;,=1

*A vertex is representative of its color class if it has the minimum index among the vertices sharing the same color



Standard DSATUR Algorithm

Algorithm 1: Standard DSATUR algorithm

Input: G = (V, E) a non-empty and non-oriented graph
Initialization:
define partial coloring ¢ with ¢; := —1 for all 2 € I
define saturation table S with S; := () for all i €
initialize set U := V, and color k£ :=0
while U # 0
find v € U, a maximum of = in U.
if |Su| = k then k:=k + 1 // a new color is added
compute ¢; := min S, // assign color to u
remove u from U
for allie€ 6. NU, S; = S; U{ci} // update saturation
end while
return color k£ and (¢) a k-coloring of G

« DSATUR is an adaptive

greedy heuristic proposed
by Brélaz [4], which colors
vertices iteratively.

Selection of the uncolored
verex to color is given with
order &=, maximizing first
the saturation degree and
secondly the degree.

Coloring a new vertex
updates saturation, the
iteration order of vertices is
thus adaptive.



DASTUR Matheuristic
Variants’

°N. Dupin, “Matheuristic Variants of DSATUR for the Vertex Coloring Problem,” in Metaheuristics 2024 [ ']



Initialization

Defining an initial partial coloring and computing the saturation table
for the uncolored vertices, before starting the main DSATUR iterations.

Variants:

1. maxDeg: color the vertex with the maximum degree — equivalent to standard DSATUR by definition
of &, it would suffer from many ties;

2. col-n: cosider n vertices having the maximum degree and color them solving a representative ILP
model for the induced subgraph — more depth pre-processing, it tries to prevent erroneous decisions
in the initial steps of DSATUR;

3. clg: find a maximum clique® and color it with different colors — an exact pre-processing (not
heuristic), it leads to a better initial saturation table .S for the uncolored vertices;

4. clg-col-n: combine clq and col-n — best of both worlds.

It is NP-hard, an heuristic can be used.



Local Optimization with Larger Neighborhoods

Let (c) be a partial k-coloring, where k is the number of colors used
until now.

« C ={iel]|c; >0} is the set of colored vertices in (c).
« UC{i€el|c, =—1}isa subset of uncolored vertices in (c).

We want to define an ILP formulation to assign a color to each vertex
u € U while preserving the colors of vertices in C.

An hybrid formulation of assignment-based and representative-based
formulations is used.



Matheuristic DSATUR Formulation

min g Lo » Binary variables z,, . are
wel 7 defined only for u < v’ € U,
when considering Ey; =
St Zz,l _|_ Z'i/,l S ]- \V/(’UZ, UZ/) c EU’ {<Uu’vu/)}u<u/eU c E.
VI € [[1 k]] » Binary variables z,, , to
)

assign previous colors, are

\V/(Uz-, ’Ui/) - EU? defined foru € U and [ €
[1; k] s.t. no neighbor u has

VueU,u<1 color [ in (¢) — i.e., for all
u € Uand! € K, where

i/ €U/ <i leK,, C,c; =1 = ngb(i,j) = 0}



Matheuristic DSATUR Formulation

« The 1st set ensures that

min g gju u adjacent vertices in U do not
’ share the same existing

color [.

s.t. z [ T 2 < 1 V(vi’ vi’) S EU’ « The 2nd set ensures that two
adjacent vertices in U
Vi e [1; k] :

cannot share the same

representative color.
V(Uz'a vi’) < EU7
o The 3rd set ensures, Vi € U,

Vu € U7 u <1 that either it receives a
previous color [ in K, or it
Z xz”,z’ + Z Zi,l > 1 VueU receives a new color
i/ elU:i/<i leK,, represented by another

vertex ¢/ in U with 7" < 3.



Matheuristic DSATUR Algorithm

Algorithm 2: Matheuristic DSATUR variants

Input: G = (V, E) a non-empty and non-oriented graph
Parameters:
e an initialization strategy S (from Sect. 3.1) ;
eoceN o>1;
ereN.
Initialization:
initialize colored set C, and color k£ with strategy S.
initialize W :=V \ C.
update partial coloring ¢ and saturation table S with strategy S.
while W # ()
sort W with order -.
define U; as the o first elements after sorting.
define U; as the elements of rank o+ 1 and min(|W|, 0 + r) after sorting.
solve ILP (15) with C and U = U; U Us.
k := k + OPT where OPT is the optimal value of the last ILP.
if o4+ r < |W| then U; = U end if
set W:=W\U;
assign colors ¢, of the ILP for v € U;
end while
return color k£ and (c¢) a k-coloring of G

S for initialization induces k, C, S, ¢, and W.

Simultaneously colors o vertices solving the
matheuristic DSATUR ILP formulation (the
standard DSATUR have o = 1 and r = 0).

Having r > 0 ensures more depth in the local
search and the possibility to reoptimize in
later iterations (set W := W \ U).

U, helps the ILP in having context when
coloring critical vertices U;.”

o+ r > |W| holds in the last iteration, and
U, = U = W ensures both termination (W \
U, = 0) and efficiency (no useless re-
optimization—i.e., recoloring r vertices).

"0 + r should be fine-tuned according to the ILP solver capabilities and instance features.



Evaluation

CPLEX 20.1 with its default parameter, except CPX_PARAM EPAGAP = 0.9 to stop computation to
optimality knowing the objective function is integer, a time limit, and also no display in screen.

A subset of 53 DIMACS instances removing easy instances for DSATUR (i.e., those solved optimally).
maxDeg: The baseline algorithm starting with the maximum degree node.

col-n: Results were generally disappointing compared to the baseline.

clq : Significantly outperforms standard DSATUR by identifying the graph’s “hardest” core first.
clg-col-80: Providing a significant improvement over the original approach.

Best clq: The top result achieved by selecting either the clq or clq-col-80 variant for each instance.
Best clq+DSATUR: Highlighting the synergy between old and new methods.

Best-DSATUR: Excluding the original algorithm.

Best+DSATUR: Confirming that standard DSATUR is still superior for specific instances.



Comparison of DSATUR matheuristics

« Using a maximum clique to

#colors | gap #BKS | #worse | #better | Q1 | Q2 | Q3
maxDeg 3240 | 32.03 % 1 0 0 0 |0 |0 initialize saturation
c01-60 3251 |32.48 % |1 19 16 1 0 |1 drastically reduces the
c01-80 3250 32.44 % 2 20 16 1|0 |1 number of colors needed
clg-col-80 3214 30.97 % | 2 18 17 —11]0 |1 from the very first steps,
clq 3209  30.77 % | 4 13 19 -1 10 |0 avoiding early errors
Best clq 3181 29.63 % | 6 7 26 -1 /0 |0 inherent in the greedy
Best c1g+DSATUR | 3174 1 29.34 % | 6 0 26 -1 10 |0 Version.
Best-DSATUR 3163 |28.89 % | 6 3 34 —2 |-110 « While clg-col-n provides
Best+DSATUR 3160 |28.77 % | 6 0 34 -2 | —1]0 the best results in terms of
BKS 2454  10.00 % |53 0 52 —14 | -5| -3

solution quality (lower k), it
requires higher initial
computation time due to the
exact resolution of
subgraphs.



Comparison with Larger Local Optimization

Init satur o ##colors | gap #BKS | #worse | #better | Q1 | Q2| Q3
maxDeg 1 3240 32.03 % | 1 0 0 0 0 |0
col-80 1 3250 32.44 % | 2 20 16 -1 /0 |1
col-80 20 |60 | 3181 29.63 % | 6 12 30 -3 |-1/0
col-80 40 | 40 | 3218 31.13 % | 5 20 26 -2 0 |1
col-80 80 |0 |3322 35.37 % | 2 35 13 0 1 |2
clq 1 3209 30.77 % | 4 13 19 -1 |0 |0
clq 40 | 40 | 3155 28.57 % | 10 9 32 -3 |-1/0
Best Clg 3134 27.71 % | 10 4 37 -3 |-1/0
Best-DSATUR 3125 27.34 % | 10 3 40 -3 | —2| -1
Best+DSATUR 3122 27.22 % | 10 0 40 -3 | —2| -1
BKS 2454 0.00 % |53 0 52 —14|-5|-3

« Depth and Re-optimization:

Using r > 0 allows coloring
the most critical vertices
(U;) while maintaining
vision over their neighbors
(Us), reducing the “threshold
effects” typical of standard
DSATUR (0o = 1,7 = 0).

As o + r increases, the
algorithm approaches an
exact solver, but
computational time grows;
the matheuristic finds an
optimal balance for medium-
sized instances.



Thank You!
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