
Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 1 of 16

Toward a Modular Approach for Type Systems

and LSP generation

Federico Bruzzone
Id. Number: 27427A

Università degli Studi di Milano

Computer Science Department

MSc in Computer Science

Advisor: Prof. Walter Cazzola

Co-Advisor: Dr. Luca Favalli

15/07/2024

LM-18 - Computer science

Academic Year 2023-2024

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 2 of 16

Problem Statement
Programming Language Implementation

The implementation of a programming language is a complex

task that involves several implementation aspects, such as:

– Syntax and semantics

definition

– Type system definition

– Code generation

– Error handling

– IDE support

– Documentation

It is usually done in a monolithic way with a top-down approach,

where all the aspects are tightly coupled.

This makes the maintainability, extensibility and reusability of the

implementation difficult.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 2 of 16

Problem Statement
Programming Language Implementation

The implementation of a programming language is a complex

task that involves several implementation aspects, such as:

– Syntax and semantics

definition

– Type system definition

– Code generation

– Error handling

– IDE support

– Documentation

It is usually done in a monolithic way with a top-down approach,

where all the aspects are tightly coupled.

This makes the maintainability, extensibility and reusability of the

implementation difficult.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 2 of 16

Problem Statement
Programming Language Implementation

The implementation of a programming language is a complex

task that involves several implementation aspects, such as:

– Syntax and semantics

definition

– Type system definition

– Code generation

– Error handling

– IDE support

– Documentation

It is usually done in a monolithic way with a top-down approach,

where all the aspects are tightly coupled.

This makes the maintainability, extensibility and reusability of the

implementation difficult.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 3 of 16

Language Server Protocol
LSP In a Nutshell

In 2016, Microsoft in collaboration with Red Hat introduced the

Language Server Protocol (LSP).

The LSP allows the communication between a Language Server

and an IDE.

Editor

Language-agnostic
editing support

Editing actions
⇕

Text changes

Server

Language-specific
editing support

Language actions
⇕

Text Changes

LSP

Intrinsic properties:

– Language-agnostic

– IDE-agnostic

– Asynchronous

– Text-based

Features:

– Diagnostics

– Hover

– Go to definition

– Find references

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 3 of 16

Language Server Protocol
LSP In a Nutshell

In 2016, Microsoft in collaboration with Red Hat introduced the

Language Server Protocol (LSP).

The LSP allows the communication between a Language Server

and an IDE.

Editor

Language-agnostic
editing support

Editing actions
⇕

Text changes

Server

Language-specific
editing support

Language actions
⇕

Text Changes

LSP

Intrinsic properties:

– Language-agnostic

– IDE-agnostic

– Asynchronous

– Text-based

Features:

– Diagnostics

– Hover

– Go to definition

– Find references

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 3 of 16

Language Server Protocol
LSP In a Nutshell

In 2016, Microsoft in collaboration with Red Hat introduced the

Language Server Protocol (LSP).

The LSP allows the communication between a Language Server

and an IDE.

Editor

Language-agnostic
editing support

Editing actions
⇕

Text changes

Server

Language-specific
editing support

Language actions
⇕

Text Changes

LSP

Intrinsic properties:

– Language-agnostic

– IDE-agnostic

– Asynchronous

– Text-based

Features:

– Diagnostics

– Hover

– Go to definition

– Find references

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 4 of 16

Language Server Protocol
The Reduction of Combinations

Initially implemented for Visual Studio Code, the LSP has been

adopted by several IDEs and programming languages.

L×E L+E

Rust

Java

C

Code

Nvim

Emacs

C

Java

Rust

LSP
or

DAP

Code

Nvim

Emacs

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 4 of 16

Language Server Protocol
The Reduction of Combinations

Initially implemented for Visual Studio Code, the LSP has been

adopted by several IDEs and programming languages.

L×E L+E

Rust

Java

C

Code

Nvim

Emacs

C

Java

Rust

LSP
or

DAP

Code

Nvim

Emacs

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 5 of 16

Language Server Protocol
What would be an important achievement?

Reducing the number of combinations between Language

Servers and IDEs.

L× 1

C

Java

Rust

LSP
or

DAP
Client Generator

Code

Nvim

Emacs

Spoiler: It is possible! and we have done better than that.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 5 of 16

Language Server Protocol
What would be an important achievement?

Reducing the number of combinations between Language

Servers and IDEs.

L× 1

C

Java

Rust

LSP
or

DAP
Client Generator

Code

Nvim

Emacs

Spoiler: It is possible! and we have done better than that.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 5 of 16

Language Server Protocol
What would be an important achievement?

Reducing the number of combinations between Language

Servers and IDEs.

L× 1

C

Java

Rust

LSP
or

DAP
Client Generator

Code

Nvim

Emacs

Spoiler: It is possible! and we have done better than that.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 6 of 16

Feature-Oriented Programming

Feature-Oriented Programming (FOP) is a programming

paradigm that allows the development of software product

lines (SPLs).

- Feature is a unit of functionality that satisfies a

requirement.

- Feature Model is a model that represents the variability of

the SPL.

- Feature Configuration is a set of features that compose

a product.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 6 of 16

Feature-Oriented Programming

Feature-Oriented Programming (FOP) is a programming

paradigm that allows the development of software product

lines (SPLs).

- Feature is a unit of functionality that satisfies a

requirement.

- Feature Model is a model that represents the variability of

the SPL.

- Feature Configuration is a set of features that compose

a product.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 7 of 16

Language Workbenches

Language Workbenches (LWs) are tools that allow the

development of programming languages, both GPLs and DSLs.

Language

Workbench

Modularization

Supp.

Precompiled

Feature

Supp.

Native

IDE

gen.

LSP

Gen.

LSP

Mod.

JustAdd G# # # # #
Melange T # 3rd p. ✰ ✰

MontiCore G# G# # #
MPS T # ✰ ✰

Rascal # # # #
Spoofax T G# ✰ ✰

Xtext # G# #
Neverlang U # ? ?

 Full support

No support

G# Limited support

U Fine-grained mod.

T Coarse-grained mod.

? My contribution

✰ Future Work

3rd p. Third-party

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 8 of 16

Scientific Contribution

- Methodology for whole LWs that support at least

component modularization.

- Type System and LSP Modularization.

- DSL (about 2k LoC) for Type System definition.

- LSP generation for Neverlang languages.

- Client and Syntax Highlighting generation reducing the

number of combinations.

- Implementation of a Java Library (about 6k LoC) for

Neverlang to support the type system for every language

developed with Neverlang.

- 3 use cases to show the effectiveness of the methodology.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 9 of 16

Scientific Contribution

N× 1 where N << L

Java

C

Rust

typedef

if

for

trait

class
LSP
or

DAP
Client Generator

Code

Nvim

Emacs

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 10 of 16

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 10 of 16

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 10 of 16

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 10 of 16

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1

· · ·

Scope X

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 10 of 16

Scientific Contribution
Type System Components

Global Scope

Typing Environment (TE)

TE Entry 1

ID 1 Table Entry 1 · · ·
· · ·

· · ·

TE Entry N

ID N Table Entry N

Type Definition 1

Type 1 Signature 1 · · ·
· · ·

· · ·

Type Definition M

Type M Signature M

Scope 1

· · ·
· · ·

· · ·

Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1 · · · Scope X

Typing Environment

Type Def 1 · · · Type Def M

Scope 1 · · · Scope X

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 11 of 16

Scientific Contribution
Type Checking and Type Inference

1 function sum1(x) {
2 return sum(x, 1);
3 }

5 function sum(x, y) {
6 return x + y;
7 }

Root

function
sum1

parameters

identifier
x

body

return

call expr

identifier
sum

arguments

identifier
x

number
1

function
sum

parameters

identifier
x

identifier
y

body

return

bin expr
+

identifier
x

identifier
y

1

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 11 of 16

Scientific Contribution
Type Checking and Type Inference

1 function sum1(x) {
2 return sum(x, 1);
3 }

5 function sum(x, y) {
6 return x + y;
7 }

– Compilation Unit

– Compilation Unit Task

– Compilation Helper

Task #0 with Priority global

Task #1 with Priority fun Task #2 with Priority fun

Root

function
sum1

parameters

identifier
x

body

return

call expr

identifier
sum

arguments

identifier
x

number
1

function
sum

parameters

identifier
x

identifier
y

body

return

bin expr
+

identifier
x

identifier
y

1

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 12 of 16

Scientific Contribution
TSs and LSP Modularization

Language Variant

Language Feature 1
Language Feature 2

Artifact 1 Artifact 2 Artifact 3

DAP Variant

Feature 1
Feature 2
Feature 3

LSP Variant

{
Feature 1
Feature 2
Feature 3

Syntax

Sem.1 Sem.2

F1 F2

F1 F2

Syntax

Sem.1 Sem.2

F2 F3

F2 F3

Syntax

Sem.1 Sem.2

F2 F3

F1 F2

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 13 of 16

LSP in Action
VSCode client

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 13 of 16

LSP in Action
VSCode client

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 14 of 16

LSP in Action
Neovim client

Demonstration

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 15 of 16

Conclusions

Interesting results:

– We are writing an article (Code Less to Code More) to be

submitted to JSS.

Interesting twist:

– Recycling the code of the TS to define a new compilation

phase inside of Neverlang.

Future work:

– Define the same methodology for the DAP.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 16 of 16

Thanks for your attention!

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 16 of 16

Software Product Lines

Since 1990s, researchers have been working on the concept

of Software Product Lines (SPLs) to move towards a more

modular world.

– SPLs defines a family of software products.

– SPLs is described by a Feature Model.

– A Feature Model describes the variability of the software.

– SPL variants are generated by selecting a set of features.

– A feature (or artifact) is a first-class entity in SPLs.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 16 of 16

Software Product Lines

Since 1990s, researchers have been working on the concept

of Software Product Lines (SPLs) to move towards a more

modular world.

– SPLs defines a family of software products.

– SPLs is described by a Feature Model.

– A Feature Model describes the variability of the software.

– SPL variants are generated by selecting a set of features.

– A feature (or artifact) is a first-class entity in SPLs.

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 16 of 16

Language Product Lines

Applying the concept of SPLs to programming languages, we

obtain the concept of Language Product Lines (LPLs).

Expression

Numbers

AddExpr MulExpr UnaryExpr Numeric

Primaries

Primary PrimaryExpr

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Some achievements:
– Bottom-up approach to language implementation

– Reusability of language artifacts

– Multiple variants of the same language

– Language Workbenches come to the rescue

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 16 of 16

Language Product Lines

Applying the concept of SPLs to programming languages, we

obtain the concept of Language Product Lines (LPLs).

Expression

Numbers

AddExpr MulExpr UnaryExpr Numeric

Primaries

Primary PrimaryExpr

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Some achievements:
– Bottom-up approach to language implementation

– Reusability of language artifacts

– Multiple variants of the same language

– Language Workbenches come to the rescue

Toward TSs

and LSP

generation

Federico

Bruzzone

Problem

Statement

LSP

In a Nutshell

The Reductions

of Combinations

An Achievement

FOP

LWs

Scientific

Contribution

Type System

Components

Checking and

Inference

Modularization

LSP in Action

Conclusions

Slide 16 of 16

Clients generation

	Problem Statement
	Programming Language Implementation

	Language Server Protocol
	LSP In a Nutshell
	The Reduction of Combinations
	What would be an important achievement?

	Feature-Oriented Programming
	Language Workbenches
	Scientific Contribution
	
	Type System Components
	Type Checking and Type Inference
	TSs and LSP Modularization

	LSP in Action
	VSCode client
	Neovim client

	Conclusions

