
P4 Compiler in SDN

Federico Bruzzone,¹ PhD Student

Milan, Italy – 16 December 2024

Slides available at
federicobruzzone.github.io/activities/presentations/P4-compiler-in-SDN.pdf

¹ADAPT Lab – Università degli Studi di Milano,
Website: federicobruzzone.github.io,
Github: github.com/FedericoBruzzone,
Email: federico.bruzzone@unimi.it

https://federicobruzzone.github.io/activities/presentations/P4-compiler-in-SDN.pdf
https://federicobruzzone.github.io/
https://github.com/FedericoBruzzone
mailto:federico.bruzzone@unimi.it

Network Programmability

The ability of the software or the hardware to extecute an externally
defined processing algorithm [1]

Network Programmability

Open Networking Foundation (ONF)

• Non-profit consortium founded in 2011

• Promotes networking through Software Defined Networking (SDN)

• Standardizes the OpenFlow protocol

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 3 / 33

Network Programmability

Software Defined Networking (SDN)

• Born to overcome the limitations
of traditional network
architectures

• Decouples the control plane
from the data plane

• Centralizes the control of the
network

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 4 / 33

Network Programmability

OpenFlow Protocol

• Gives access to the forwarding plane (data plane) of a network
device

• Mainly used by switches and controllers

• Layered on top of the Transport Control Protocol (TCP)

• De-facto standard for SDN

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 5 / 33

Network Programmability

OpenFlow Development

• First appeared in 2008 [2]

• In April 2012, Google deploys OpenFlow in its internal network with
significant improvements (Urs Hölzle promotes it²)

• In January 2013, NEC rolls out OpenFlow for Microsoft Hyper-V

• Latest version is 1.5.1 (Apr 2015)

²Inter-Datacenter WAN with centralized TE using SDN and OpenFlow.

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 6 / 33

https://opennetworking.org/wp-content/uploads/2013/02/cs-googlesdn.pdf

Network Programmability

Fields in OpenFlow Standard

Version Date Header Fields
OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)
OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)
OF 1.2 Dec 2011 36 fields (APR, ICMP, IPv6, etc.)
OF 1.3 Jun 2012 40 fields
OF 1.4 Oct 2013 41 fields

More Details on the OpenFlow v1.0.0 Switch Specification³

³https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 7 / 33

https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf

OpenFlow is protocol-dependent

Fixed set of fields and parser based on standard protocols
(Ethernet, IPv4/IPv6, TCP/UDP)

P4: Programming Protocol-Independent
Packet Processors

Bosshart believed that future generations of OpenFlow would have
allowed the controller to tell the switch how to operate [3]

P4: Programming Protocol-Independent Packet Processors

Goals and Challenges

New Control Plane Specification: P4Runtime for controlling the data
plane elements of a device defined by a P4 program

Reconfigurability: the controller should be able to redefine the packet
parsing and processing in the field

Protocol Independence: the switch should process headers using
parsing and processing using match+action tables

Target Independence: a compiler from target-independent description
to target-dependent binary

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 10 / 33

P4: Programming Protocol-Independent Packet Processors

Goals and Challenges

New Control Plane Specification: P4Runtime for controlling the data
plane elements of a device defined by a P4 program

Reconfigurability: the controller should be able to redefine the packet
parsing and processing in the field

Protocol Independence: the switch should process headers using
parsing and processing using match+action tables

Target Independence: a compiler from target-independent description
to target-dependent binary

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 10 / 33

P4: Programming Protocol-Independent Packet Processors

Goals and Challenges

New Control Plane Specification: P4Runtime for controlling the data
plane elements of a device defined by a P4 program

Reconfigurability: the controller should be able to redefine the packet
parsing and processing in the field

Protocol Independence: the switch should process headers using
parsing and processing using match+action tables

Target Independence: a compiler from target-independent description
to target-dependent binary

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 10 / 33

P4: Programming Protocol-Independent Packet Processors

Goals and Challenges

New Control Plane Specification: P4Runtime for controlling the data
plane elements of a device defined by a P4 program

Reconfigurability: the controller should be able to redefine the packet
parsing and processing in the field

Protocol Independence: the switch should process headers using
parsing and processing using match+action tables

Target Independence: a compiler from target-independent description
to target-dependent binary

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 10 / 33

P4: Programming Protocol-Independent Packet Processors

Abstract Forwarding Model (AFM)

1. Parsing the packet headers

2. The fields are passed to the match-action
pipeline.
• Ingrees: determines the egress port/queue
• Egress: per-instance header modifications

3. Metadata processing (e.g., timestamp)

4. As in OpenFlow, the queuing discipline is
chosen at switch configuration time (e.g.,
minimum rate)

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 11 / 33

P4: Programming Protocol-Independent Packet Processors

Abstract Forwarding Model (AFM)

1. Parsing the packet headers

2. The fields are passed to the match-action
pipeline.
• Ingrees: determines the egress port/queue
• Egress: per-instance header modifications

3. Metadata processing (e.g., timestamp)

4. As in OpenFlow, the queuing discipline is
chosen at switch configuration time (e.g.,
minimum rate)

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 11 / 33

P4: Programming Protocol-Independent Packet Processors

Abstract Forwarding Model (AFM)

1. Parsing the packet headers

2. The fields are passed to the match-action
pipeline.
• Ingrees: determines the egress port/queue
• Egress: per-instance header modifications

3. Metadata processing (e.g., timestamp)

4. As in OpenFlow, the queuing discipline is
chosen at switch configuration time (e.g.,
minimum rate)

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 11 / 33

P4: Programming Protocol-Independent Packet Processors

Abstract Forwarding Model (AFM)

1. Parsing the packet headers

2. The fields are passed to the match-action
pipeline.
• Ingrees: determines the egress port/queue
• Egress: per-instance header modifications

3. Metadata processing (e.g., timestamp)

4. As in OpenFlow, the queuing discipline is
chosen at switch configuration time (e.g.,
minimum rate)

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 11 / 33

P4: Programming Protocol-Independent Packet Processors

Two-stage Compilation

Imperative control flow program based on AFM

1. The compiler translate the P4
program into TDGs (Table Dependency Graphs)

2. The TDGs are compiled into
target-dependent code

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 12 / 33

Real Case Scenario
Setup: L2 Network Architecture
• Edge (top-of-rack switches): connect end-hosts to the network
• Core: central layer that connects the edge devices

Problem: Growing End-Hosts and Overflowing Tables
• The L2 forwarding tables in the core are becoming too large → overflow
• It can cause packet loss and network congestion

Solutions: Muti-protocol Label Switching and PortLand
• MPLS: a technique that uses labels to make data forwarding decisions → with multiple tags is daunting
• PortLand: a scalable L2 network architecture → rewrite MAC addresses

P4: Programming Protocol-Independent Packet Processors

P4: Language Design

Header: describes the structure of a series of fields and constraints on values

Parser: specifies how to identify headers and valid header sequences

Table: defines the fields to match on and the actions to take

Action: construction of actions from simpler protocol-independent primitives

Control Programs: determines the order of match+action tables that are
applied to a packet

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 14 / 33

P4: Language Design

Header
Describes the structure of a series of fields and constraints on values

header ethernet {
 fields {
 dst_addr: 48; // bits
 src_addr: 48;
 ethertype: 16;
 }
}

header vlan {
 fields {
 pcp: 3;
 cfi: 1;
 vid: 12;
 ethertype: 16;
 }
}

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 15 / 33

P4: Language Design

Header (Cont.)

header mTag {
 fields {
 up1: 8;
 up2: 8;
 down1: 8;
 down2: 8;
 ethertype: 16;
 }
}

• mTag can be added without altering the
existing headers

• The core has two layers of aggregation
• Each core switch examines on of these bytes

detemined by its location and the direction
of the packet

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 16 / 33

P4: Language Design

Parser
Specifies how to identify headers and valid header sequences

parser start { ethernet; }

parser ethernet {
 switch(ethertype) {
 case 0x8100: vlan;
 case 0x9100: vlan;
 case 0x800: ipv4;
 // Other cases
 }
}

parser vlan {
 switch(ethertype) {
 case 0xaaaa: mTag;
 case 0x800: ipv4;
 // Other cases
 }
}

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 17 / 33

P4: Language Design

Parser (Cont.)

parser mTag {
 switch(ethertype) {
 case 0x800: ipv4;
 // Other cases
 }
}

• Reached a state for a new header, the State
Machine extracts the header and sends it
to the match+action pipeline

• The parser for mTag is simple, it has only
four states

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 18 / 33

P4: Language Design

Table
Defines the fields to match on and the actions to take

table mTag_table {
 reads {
 ethernet.dst_addr: exact;
 vlan.vid: exact;
 }
 actions {
 // At runtime, entries are
 // programmed with params
 // for the mTag action.
 add_mTag;
 }
 max_size: 20000;
}

The compiler knows what memory type use
(e.g., TCAM, SRAM) and the amount of
memory to allocate

• reads: the edge switch matches on the L2
destination address and the VLAN ID

• actions: selects an mTag to add to the
header

• max_size: the maximum number of entries

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 19 / 33

P4: Language Design

Action
Construction of actions from simpler protocol-independent primitives

action add_mTag(up1, up2, down1, down2, egr_spec) {
 add_header(mTag);
 // Copy VLAN ethertype to mTag
 copy_field(mTag.ethertype, vlan.ethertype);
 // Set VLAN’s ethertype to signal mTag
 set_field(vlan.ethertype, 0xaaaa);
 set_field(mTag.up1, up1);
 set_field(mTag.up2, up2);
 set_field(mTag.down1, down1);
 set_field(mTag.down2, down2);
 // Set the destination egress port as well
 set_field(metadata.egress_spec, egr_spec);
}

• P4 assumes parallel
execution

• Parameters are passed
from the match table at
runtime

• The switch inserts the
mTag afer the VLAN
header

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 20 / 33

P4: Language Design

Control Programs
Determines the order of match+action tables that are applied to a packet

control main() {
 // Verify mTag state and port are consistent
 table(source_check);
 // If no error from source_check, continue
 if (!defined(metadata.ingress_error)) {
 // Attempt to switch to end hosts
 table(local_switching);
 if (!defined(metadata.egress_spec)) {
 // Not a known local host; try mtagging
 table(mTag_table);
 }
 // Check for unknown egress state or
 // bad retagging with mTag.
 table(egress_check);
 }
}

• mTag should only be seen on ports to the core

• source_check strips the mTag and records it in the
metadata to avoid retagging

• If the local_switching table misses, the packet is
not destined for a local host

• Both local and core forwarding control is handled
by the egress_check table

• If unknown destination, the SDN controller is
notified during egress_check

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 21 / 33

P4: Language Design

P4: Compilation Process

• The P4 compiler translates the P4 program into a target-independent
representation (TDGs)

• The TDGs are compiled into target-dependent code

• The compiler can optimize the table layout to minimize the number of
tables and the number of lookups

• The compiler can detect data dependencies and arrange tables in
parallel or in series

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 22 / 33

P4: Compilation Process

Compiling Packet Parsers

• For devices with programmable parsers, the compiler generates the
parser state machine (see PISA architecture)

• For devices with fixed parsers, the compiler verifies that the parser
description is consistent with the device’s fixed parser (e.g., ASICs)

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 23 / 33

P4: Compilation Process

Compiling Packet Parsers (Cont.)

Parser state table entries for the vlan and mTag sections of the parser

Current Version Lookup Value Next State
vlan 0xaaaa mTag
vlan 0x800 ipv4
vlan * stop
mTag 0x800 ipv4
mTag * stop

The * is a wildcard that matches any value

The stop state indicates that the parser has finished processing the packet

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 24 / 33

P4: Compilation Process

Compiling Control Programs

The imperative control-flow representation does not call out dependencies
between tables or opportunities for concurrency

1. The compiler analyzes the control program to determine
dependencies between tables and opportunities for concurrency

2. The compiler generates the target configuration for the switch

Is this not familiar?
Two-stage compilation

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 25 / 33

P4: Compilation Process

Compiling Control Programs

The imperative control-flow representation does not call out dependencies
between tables or opportunities for concurrency

1. The compiler analyzes the control program to determine
dependencies between tables and opportunities for concurrency

2. The compiler generates the target configuration for the switch

Is this not familiar?
Two-stage compilation

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 25 / 33

P4: Compilation Process

Compiling Control Programs

The imperative control-flow representation does not call out dependencies
between tables or opportunities for concurrency

1. The compiler analyzes the control program to determine
dependencies between tables and opportunities for concurrency

2. The compiler generates the target configuration for the switch

Is this not familiar?
Two-stage compilation

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 25 / 33

P4: Compilation Process

Compiling Control Programs

The imperative control-flow representation does not call out dependencies
between tables or opportunities for concurrency

1. The compiler analyzes the control program to determine
dependencies between tables and opportunities for concurrency

2. The compiler generates the target configuration for the switch

Is this not familiar?
Two-stage compilation

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 25 / 33

P4: Compilation Process

1. Software Switches

• Software Switches provide
complete flexibility:

1. Table Count

2. Table Configuration

3. Parsing under SW control

• The compiler:

1. Maps the mTag table graph to
switch tables

2. Uses table type to constrain
width, height, and matching
criterion

3. Can optimize ternary
matches with SW data
structures

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 26 / 33

P4: Compilation Process

2. Hardware Switches with RAM and TCAM

In edge switches, the compiler configure hashing to perform efficient
exact-matching using RAM

In core switches, which match on a subset of fields, the compiler maps
the table to TCAM

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 27 / 33

P4: Compilation Process

3. Switches supporting parallel tables

The compiler can detect data dependencies and arrange tables in
parallel or in series

In the mTag example, the mTag_table and local_switching tables can
be executed in parallel up to the add_mTag action

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 28 / 33

P4: Compilation Process

4. Switches that apply actions at the end of the
pipeline

The compiler can tell to the intermediate stages to generate metadata
for the final action

In the mTag example, whether the mTag is added or not could be
represented in metadata

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 29 / 33

P4: Compilation Process

5. Switches with a few tables

The compiler can optimize the table layout to minimize the number of
tables and the number of lookups

When a controller installs a rule (at runtime), the compiler can generate
P4 tables to generate the rules for the single physical table

In the mTag example, the local_switching table could be merged with
the mTag_table

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 30 / 33

Thanks for your attention!
Slides available at

federicobruzzone.github.io/activities/presentations/P4-compiler-in-SDN.pdf

Website federicobruzzone.github.io
Github github.com/FedericoBruzzone

𝕏 @fedebruzzone7
LinkedIn in/federico-bruzzone
Telegram @federicobruzzone

Email 1 federico.bruzzone@unimi.it
Email 2 federico.bruzzone.i@gmail.com

https://federicobruzzone.github.io/activities/presentations/P4-compiler-in-SDN.pdf
https://federicobruzzone.github.io/
https://github.com/FedericoBruzzone
https://x.com/fedebruzzone7
https://www.linkedin.com/in/federico-bruzzone/
https://t.me/federicobruzzone
mailto:federico.bruzzone@unimi.it
mailto:federico.bruzzone.i@gmail.com

Bibliography
[1] F. Hauser et al., “A survey on data plane programming with p4:

Fundamentals, advances, and applied research,” Journal of Network
and Computer Applications, vol. 212, p. 103561, 2023.

[2] N. McKeown et al., “OpenFlow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–
74, Mar. 2008, doi: 10.1145/1355734.1355746.

[3] P. Bosshart et al., “P4: programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp.
87–95, Jul. 2014, doi: 10.1145/2656877.2656890.

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2656877.2656890

Bibliography

Table (Addition)
table source_check {
 // Verify mtag only on ports to the core
 reads {
 mtag : valid; // Was mtag parsed?
 metadata.ingress_port : exact;
 }
 actions { // Each table entry specifies *one* action
 // If inappropriate mTag, send to CPU
 fault_to_cpu;
 // If mtag found, strip and record in metadata
 strip_mtag;
 // Otherwise, allow the packet to continue
 pass;
 }
 max_size: 64; // One rule per port
}

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 32 / 33

Bibliography

Table (Addition)
table local_switching {
 // Reads destination and checks if local
 // If miss occurs, goto mtag table.
}
table egress_check {
 // Verify egress is resolved
 // Do not retag packets received with tag
 // Reads egress and whether packet was mTagged
}

Federico Bruzzone – Adapt Lab – Università degli Studi di Milano 33 / 33

	Network Programmability
	Open Networking Foundation (ONF)
	Software Defined Networking (SDN)
	OpenFlow Protocol
	OpenFlow Development

	Fields in OpenFlow Standard
	OpenFlow is protocol-dependent

	P4: Programming Protocol-Independent Packet Processors
	Goals and Challenges
	Abstract Forwarding Model (AFM)
	Two-stage Compilation
	Real Case Scenario

	P4: Language Design
	Header
	Header (Cont.)
	Parser
	Parser (Cont.)
	Table
	Action
	Control Programs

	P4: Compilation Process
	Compiling Packet Parsers
	Compiling Packet Parsers (Cont.)
	Compiling Control Programs
	1. Software Switches
	2. Hardware Switches with RAM and TCAM
	3. Switches supporting parallel tables
	4. Switches that apply actions at the end of the pipeline
	5. Switches with a few tables

	Thanks for your attention!
	Bibliography
	Table (Addition)
	Table (Addition)

